Skip to content
Snippets Groups Projects

implement 'npoints' strategy for the 'BalancingLearner'

Merged Bas Nijholt requested to merge balancing_learner_points into master
@@ -36,10 +36,10 @@ class BalancingLearner(BaseLearner):
>>> cdims = (['A', 'B'], itertools.product([True, False], [0, 1]))
>>> cdims = (['A', 'B'], [(True, 0), (True, 1),
... (False, 0), (False, 1)])
strategy : 'loss_improvements' (default) or 'loss'
The points that the 'BalancingLearner' choses can be either based on
the best 'loss_improvements' or the smallest total 'loss' of the
child learners.
strategy : 'loss_improvements' (default), 'loss', or 'npoints'
The points that the 'BalancingLearner' choses can be either based on:
the best 'loss_improvements', the smallest total 'loss' of the
child learners, or the number of points per learner, using 'npoints'.
Notes
-----
@@ -73,9 +73,11 @@ class BalancingLearner(BaseLearner):
self._ask_and_tell = self._ask_and_tell_based_on_loss_improvements
elif strategy == 'loss':
self._ask_and_tell = self._ask_and_tell_based_on_loss
elif strategy == 'npoints':
self._ask_and_tell = self._ask_and_tell_based_on_npoints
else:
raise ValueError('Only strategy="loss_improvements" or'
' strategy="loss" is implemented.')
raise ValueError('Only strategy="loss_improvements",'
' strategy="loss", or strategy="npoints" is implemented.')
def _ask_and_tell_based_on_loss_improvements(self, n):
points = []
@@ -109,6 +111,22 @@ class BalancingLearner(BaseLearner):
loss_improvements.append(ls[0])
return points, loss_improvements
def _ask_and_tell_based_on_npoints(self, n):
points = []
loss_improvements = []
npoints = [l.npoints + len(l.pending_points)
for l in self.learners]
n_left = n
while n_left > 0:
i = np.argmin(npoints)
xs, ls = self.learners[i].ask(1)
npoints[i] += 1
n_left -= 1
points.append((i, xs[0]))
loss_improvements.append(ls[0])
return points, loss_improvements
def ask(self, n, tell_pending=True):
"""Chose points for learners."""
if not tell_pending:
Loading