Skip to content
Snippets Groups Projects
Commit a962b2a2 authored by Kostas Vilkelis's avatar Kostas Vilkelis :flamingo: Committed by Johanna Zijderveld
Browse files

start working on the physics notes

parent 06d1a482
No related branches found
No related tags found
1 merge request!7Examples
This commit is part of merge request !7. Comments created here will be created in the context of that merge request.
# Details
## Ground state definition
Before we proceed, we must find a way to simply represent the ground state of the system.
Assume there exists a non-interacting system $\hat{H}_\text{mf}$ whose groundstate closely resembles the interacting groundstate $| 0 \rangle$:
$$
| 0 \rangle \approx \Pi_{E_i \leq \mu } b_i^\dagger |\textrm{vac}\rangle,
$$
where $|\textrm{vac}\rangle$ is the vacuum state, $b_i^\dagger$ is the creation operator of eigenstate $i$ with energy $E_i$ of $\hat{H}_\text{mf}$ and $\mu$ is the Fermi level.
We relate the $b_i^\dagger$ particles to our original basis via a unitary transformation:
$$
c_i^\dagger = \sum_{k} U_{ik} b_k^\dagger.
$$
## Normal ordering and contractions
Before proceeding, we define the *normal ordering* operation, $:ABC...:$, as a sorting of operators such that all the creation operators $b_i^\dagger$ below the Fermi level are to the left of the annihilation $b_i$ operators below the Fermi levels, and vice versa for the operators above the Fermi level.
Whenever the normal ordered operators acts on the ground state, it gives zero:
$$
:ABC...: | 0 \rangle = 0.
$$
Lastly, we define the *contraction* of two operators $A$ and $B$ as:
$$
\overline{AB} = \hat{A}\hat{B} - :AB:.
$$
## Expansion of the interaction term
We utilize Wick's theorem to expand the interaction term:
$$
c_i^\dagger c_j^\dagger c_l c_k = :c_i^\dagger c_j^\dagger c_l c_k: \\
+ \overline{c_i^\dagger c_k} :c_j^\dagger c_l: - \overline{c_i^\dagger c_l} :c_j^\dagger c_k: - \overline{c_j^\dagger c_k} :c_i^\dagger c_l: + \overline{c_j^\dagger c_l} :c_i^\dagger c_k: + \overline{c_i^\dagger c_j^\dagger} :c_l c_k: + \overline{c_l c_k} :c_i^\dagger c_j^\dagger: \\
- \overline{c_i^\dagger c_l} \overline{c_j^\dagger c_k} +\overline{c_i^\dagger c_k} \overline{c_j^\dagger c_l}
+\overline{c_i^\dagger c_j^\dagger} \overline{c_l c_k}.
$$
## Mean-field approximation to Wick terms
We are now able to apply the mean-field approximation to the Wick terms.
Lets first apply this to the first term in the expansion:
$$
:c_i^\dagger c_j^\dagger c_l c_k: = \langle :c_i^\dagger c_j^\dagger c_l c_k: \rangle + \delta:c_i^\dagger c_j^\dagger c_l c_k: \approx 0,
$$
where the first term in the second equality is zero due to the normal ordering operation and the second term is zero since we assume deviations from the mean-field ground state are small.
Next, we apply the mean-field approximation to the second term in the expansion:
$$
\overline{c_i^\dagger c_k} :c_j^\dagger c_l: \approx \\
\langle \overline{c_i^\dagger c_k} \rangle :c_j^\dagger c_l: + \overline{c_i^\dagger c_k} \langle :c_j^\dagger c_l: \rangle - \langle \overline{c_i^\dagger c_k} \rangle \langle :c_j^\dagger c_l: \rangle = \\
\langle c_i^\dagger c_k \rangle :c_j^\dagger c_l:.
$$
Repeating this for all terms in the expansion and collecting we find:
$$
c_i^\dagger c_j^\dagger c_l c_k \approx \\
\langle c_i^\dagger c_k \rangle c_j^\dagger c_l - \langle c_i^\dagger c_l \rangle c_j^\dagger c_k - \langle c_j^\dagger c_k \rangle c_i^\dagger c_l + \langle c_j^\dagger c_l \rangle c_i^\dagger c_k + \langle c_i^\dagger c_j^\dagger \rangle c_l c_k + \langle c_l c_k \rangle c_i^\dagger c_j^\dagger
\\
- \langle c_i^\dagger c_l \rangle \langle c_j^\dagger c_k \rangle + \langle c_i^\dagger c_k \rangle \langle c_j^\dagger c_l \rangle + \langle c_i^\dagger c_j^\dagger \rangle \langle c_l c_k \rangle.
$$
# Self-consistent mean field algorithm # Algorithm overview
## Mean-field approximation ## Interacting problems
The full hamiltonian is: In physics, one often encounters problems where a system of multiple particles interact with each other.
By using the second quantization notation, a general Hamiltonian of such system reads:
$$ :::{math}
:label: hamiltonian
\hat{H} = \hat{H_0} + \hat{V} = \sum_{ij} h_{ij} c^\dagger_{i} c_{j} + \frac{1}{2} \sum_{ijkl} v_{ijkl} c_i^\dagger c_j^\dagger c_l c_k \hat{H} = \hat{H_0} + \hat{V} = \sum_{ij} h_{ij} c^\dagger_{i} c_{j} + \frac{1}{2} \sum_{ijkl} v_{ijkl} c_i^\dagger c_j^\dagger c_l c_k
$$ :::
We assume the dominant part of the ground state wavefunction comes from $\hat{H}_0$. Let's assume $b_i$ operators diagonalize the unperturbed hamiltonian:
$$
c_i^\dagger = \sum_{k} U_{ik} b_k^\dagger,
$$
such that the unperturbed groundstate wavefunction is:
$$
| 0 \rangle = \Pi_{E_i \leq \mu } b_i^\dagger |\textrm{vac}\rangle.
$$
Based on this definition, we define the normal ordering operator $:ABC...:$ such that it fulfills:
$$
:ABC...: | 0 \rangle = 0
$$
which practically means it orders $b_i$ operators based on whether its above or below the Fermi level $\mu$.
Under this definition of normal ordering, we define the Wick's expansion of the interaction term:
$$
\begin{multline}
c_i^\dagger c_j^\dagger c_l c_k = :c_i^\dagger c_j^\dagger c_l c_k: \\+ \overline{c_i^\dagger c_j^\dagger} :c_l c_k: + \overline{c_i^\dagger c_k} :c_j^\dagger c_l: - \overline{c_i^\dagger c_l} :c_j^\dagger c_k: + \overline{c_l c_k} :c_i^\dagger c_j^\dagger: - \overline{c_j^\dagger c_k} :c_i^\dagger c_l: + \overline{c_j^\dagger c_l} :c_i^\dagger c_k: \\
\overline{c_i^\dagger c_j^\dagger} \overline{c_l c_k} - \overline{c_i^\dagger c_l} \overline{c_j^\dagger c_k} + \overline{c_i^\dagger c_k} \overline{c_j^\dagger c_l}
\end{multline}
$$
where the overline defines Wick's contraction:
$$
\overline{AB} = AB - :AB:.
$$
The expectation value of the interaction with respect to the $| 0 \rangle$ is:
$$
\langle 0 | c_i^\dagger c_j^\dagger c_l c_k | 0 \rangle = \langle 0 | \overline{c_i^\dagger c_j^\dagger} \overline{c_l c_k} - \overline{c_i^\dagger c_l} \overline{c_j^\dagger c_k} + \overline{c_i^\dagger c_k} \overline{c_j^\dagger c_l} | 0 \rangle
$$
where we can forget about all the normal ordered states since those give zero acting on the unperturbed groundstate. To evaluate this further, we utilize the mean-field approximation:
$$
A B \approx \langle A \rangle B + A \langle B \rangle - \langle A \rangle \langle B \rangle
$$
onto the contractions such that we get:
$$
\langle c_i^\dagger c_j^\dagger c_l c_k \rangle \approx \langle c_i^\dagger c_j^\dagger \rangle \langle c_l c_k \rangle + \langle c_i^\dagger c_k \rangle \langle c_j^\dagger c_l \rangle - \langle c_i^\dagger c_l \rangle \langle c_j^\dagger c_k \rangle
$$
note $\langle A B \rangle \approx \langle A \rangle \langle B \rangle$ assuming mean-field. where $c_i^\dagger$ and $c_i$ are creation and annihilation operators respectively for fermion in state $i$.
The first term $\hat{H}_0$ is the non-interacting Hamiltonian which by itself is straightforward to solve in a single-particle basis by direct diagonalizations made easy through packages such as `kwant`.
The second term $\hat{V}$ is the interaction term between two particles.
In order to solve the interacting problem exactly, one needs to diagonalize the full Hamiltonian $\hat{H}$ in the many-particle basis which grows exponentially with the number of particles.
Such a task is often infeasible for large systems and one often needs to resort to approximations.
To consider excitations from the groundstate, we make use of the mean-field approximation defined above: ## Mean-field approximation
$$
\begin{multline}
c_i^\dagger c_j^\dagger c_l c_k \approx \\
\langle c_i^\dagger c_j^\dagger \rangle c_l c_k + \langle c_i^\dagger c_k \rangle c_j^\dagger c_l - \langle c_i^\dagger c_l \rangle c_j^\dagger c_k + \langle c_l c_k \rangle c_i^\dagger c_j^\dagger - \langle c_j^\dagger c_k \rangle c_i^\dagger c_l + \langle c_j^\dagger c_l \rangle c_i^\dagger c_k + \\
\langle c_i^\dagger c_j^\dagger \rangle \langle c_l c_k \rangle + \langle c_i^\dagger c_k \rangle \langle c_j^\dagger c_l \rangle - \langle c_i^\dagger c_l \rangle \langle c_j^\dagger c_k \rangle
\end{multline}
$$
Where we made use of the following operations:
$$
:c_i^\dagger c_j^\dagger c_l c_k: \approx 0
$$
$$
\overline{c_i^\dagger c_k} \overline{c_j^\dagger c_l} \approx \langle \overline{c_i^\dagger c_k} \rangle \overline{c_j^\dagger c_l} + \overline{c_i^\dagger c_k} \langle \overline{c_j^\dagger c_l} \rangle - \langle \overline{c_i^\dagger c_k} \rangle \langle \overline{c_j^\dagger c_i} \rangle = \langle c_i^\dagger c_k \rangle \overline{c_j^\dagger c_l} + \overline{c_i^\dagger c_k} \langle c_j^\dagger c_l \rangle - \langle c_i^\dagger c_k \rangle \langle c_j^\dagger c_l \rangle
$$
$$
\overline{c_i^\dagger c_k} :c_j^\dagger c_l: \approx \langle \overline{c_i^\dagger c_k} \rangle :c_j^\dagger c_l: + \overline{c_i^\dagger c_k} \langle :c_j^\dagger c_l: \rangle - \langle \overline{c_i^\dagger c_k} \rangle \langle :c_j^\dagger c_l: \rangle = \langle \overline{c_i^\dagger c_k} \rangle :c_j^\dagger c_l:
$$
$$
\langle \overline{c_i^\dagger c_k} \rangle = \langle c_i^\dagger c_k - :c_i^\dagger c_k: \rangle = \langle c_i^\dagger c_k \rangle
$$
Without any superconducting terms, the form simplifies to:
$$
\begin{multline}
c_i^\dagger c_j^\dagger c_l c_k \approx
\langle c_i^\dagger c_k \rangle c_j^\dagger c_l - \langle c_i^\dagger c_l \rangle c_j^\dagger c_k - \langle c_j^\dagger c_k \rangle c_i^\dagger c_l + \langle c_j^\dagger c_l \rangle c_i^\dagger c_k + \\
\langle c_i^\dagger c_k \rangle \langle c_j^\dagger c_l \rangle - \langle c_i^\dagger c_l \rangle \langle c_j^\dagger c_k \rangle
\end{multline}
$$
## Finite size
### Coulomb interaction
We simplify the interaction term through the MF approximation to get:
$$
V = \frac{1}{2}\sum_{ijkl} v_{ijkl} c_i^{\dagger} c_j^{\dagger} c_l c_k
\approx
\frac12 \sum_{ijkl} v_{ijkl} \left[ \langle c_i^{\dagger} c_k \rangle c_j^{\dagger} c_l - \langle c_j^{\dagger} c_k \rangle c_i^{\dagger} c_l - \langle c_i^{\dagger} c_l \rangle c_j^{\dagger} c_k + \langle c_j^{\dagger} c_l \rangle c_i^{\dagger} c_k \right]
$$
(assuming no superconductivity)
and an additional constant part:
$$
V_0 = \frac{1}{2} \sum_{ijkl} v_{ijkl} \left(\langle c_j^{\dagger} c_l \rangle \langle c_i^{\dagger} c_k \rangle - \langle c_j^{\dagger} c_k \rangle \langle c_i^{\dagger} c_l \rangle \right).
$$
The interaction reads:
$$
v_{ijkl} = \iint w_{i}^*(r) w_{j}^*(r') V(r, r') w_{k}(r) w_l(r') dr dr' = \\
\iint V(|r - r'|) w_{i}^*(r)w_{k}(r) w_{j}^*(r') w_l(r') dr dr'
$$
whereas $w_i$ is a wannier function on site i (and corresponding dof). Whenever one interchanges $i \to j, k \to l$, the Coulomb term is preserved $v_{ijkl} = v_{jilk}$
To make things more understandable, we are also going to explicitly split up position and spin indices: $i \to i \times \sigma$. In this notation, the Coulomb integral reads:
$$
v_{ijkl}^{\sigma_i \sigma_j \sigma_k \sigma_l} =
\iint V(|r - r'|) w_{i\times\sigma_i}^{*} (r)w_{k \times \sigma_k}(r) w_{j \times \sigma_j}^{*}(r') w_{l\times \sigma_l}(r') dr dr' \delta_{\sigma_i \sigma_k} \delta_{\sigma_{j} \sigma_l}
$$
On a fine tight-binding model, we have: In many interacting systems, there exist constant order parameters $\langle A \rangle$ that describe the phase of the system.
Here we define $\hat{A}$ as some operator and $\langle \rangle$ denotes the expectation value with respect to the ground state of the system.
Famous examples of such order parameter is the magnetization in a ferromagnet and the superconducting order parameter in a superconductor.
If we are interested in properties of the system close to the ground state, we can re-write the operator $\hat{A}$ around the order parameter:
$$ $$
v_{ijkl}^{\sigma_i \sigma_j \sigma_k \sigma_l} = v_{ij} \delta_{ik} \delta_{jl} \delta_{\sigma_i \sigma_k} \delta_{\sigma_j \sigma_l} \hat{A} = \langle A \rangle + \delta \hat{A},
$$ $$
where $v_{ij} = V(r_i, r_j)$. where operator $\delta \hat{A}$ describes the fluctuations around the order parameter.
Let us consider an additional operator $\hat{B}$ and say we are interested in the product of the two operators $\hat{A}\hat{B}$.
We shall re-define $i$ index to absorb spin: If we assume that the fluctuations $\delta$ are small, we can approximate the product of operators into a sum of single operators and the product of the expectation values:
$$ $$
\delta_{ik} \times \delta_{\sigma_{i} \sigma_{k}} \to \delta_{ik} \hat{A}\hat{B} \approx \langle A \rangle \hat{B} + \hat{A} \langle B \rangle - \langle A \rangle \langle B \rangle
$$ $$
in this notation the above reads: where we neglect $\delta^2$ terms.
This approximation is known as the mean-field approximation.
$$ ## Mean-field Hamiltonian
v_{ijkl} = v_{ij} \delta_{ik} \delta_{jl}
$$
The mean-field terms are: We apply the mean-field approximation to the quartic interaction term in {eq}`hamiltonian`:
$$ $$
\langle c_i^{\dagger} c_j\rangle = \langle \Psi_F|c_i^{\dagger} c_j | \Psi_F \rangle V \approx \frac12 \sum_{ijkl} v_{ijkl} \left[
\langle c_i^\dagger c_k \rangle c_j^\dagger c_l - \langle c_i^\dagger c_l \rangle c_j^\dagger c_k - \langle c_j^\dagger c_k \rangle c_i^\dagger c_l + \langle c_j^\dagger c_l \rangle c_i^\dagger c_k \right]
$$ $$
whereas $|\Psi_F \rangle = \Pi_{i=0}^{N_F} b_i^\dagger |0\rangle$. To make sense of things, we need to transform between $c_i$ basis (position + internal dof basis) into the $b_i$ basis (eigenfunction of a given mean-field Hamiltonian): where we make use of Wicks theorem to simplify the expression and neglect the superconducting pairing and constant offset terms.
$$ :::{admonition} Derivation of the mean-field Hamiltonian with Wicks theorem
c_i^\dagger = \sum_{k} U_{ik} b_k^\dagger :class: dropdown info
$$ ```{include} mf_details.md
```
where :::
The expectation value terms $\langle c_i^\dagger c_j \rangle$ are the density matrix elements of the ground state of the system:
$$ $$
U_{ik} = \langle{i|\psi_k} \rangle. \rho_{ij} = \langle c_i^\dagger c_j \rangle.
$$ $$
That gives us: ### Tight-binding grid
We project $\hat{V}$ onto a tight-binding grid:
$$ $$
c_i^{\dagger} c_j = \sum_{k, l} U_{ik} U_{lj}^* b_k^\dagger b_{l} V_{nm} = \langle n | \hat{V} | m \rangle = \\
$$ \frac12 \left[ \sum_{ik} v_{inkm} F_{ik} - \sum_{jk} v_{njkm} F_{jk} - \sum_{il} v_{inml} F_{il} + \sum_{jl} v_{njml} F_{jl} \right] = \\
-\sum_{ij} F_{ij} \left(v_{inmj} - v_{injm} \right)
and its expectation value gives us the mean-field ... field $F_{ij}$:
$$
F_{ij} = \langle c_i^{\dagger} c_j\rangle = \sum_{k, l} U_{ik} U_{lj}^* \langle \Psi_F| b_k^\dagger b_{l}| \Psi_F \rangle = \sum_{k} U_{ik} U_{kj}^{*}
$$ $$
whereas I assumed the indices for wavefunctions $k,l$ are ordered in terms of increasing eigenvalue. We pop that into the definition of the mean-field correction $V$: where I used the $v_{ijkl} = v_{jilk}$ symmetry from Coulomb.
For density-density interactions (like Coulomb repulsion) the interaction tensor reads:
$$ $$
\begin{multline} v_{ijkl} = v_{ij} \delta_{ik} \delta_{jl},
V_{nm} = \frac12 \sum_{ijkl} v_{ijkl} \langle n| \left[ \langle c_i^{\dagger} c_k \rangle c_j^{\dagger} c_l - \langle c_j^{\dagger} c_k \rangle c_i^{\dagger} c_l - \langle c_i^{\dagger} c_l \rangle c_j^{\dagger} c_k + \langle c_j^{\dagger} c_l \rangle c_i^{\dagger} c_k \right] |m\rangle = \\
\frac12 \sum_{ijkl} v_{ijkl} \left[ +\delta_{jn}\delta_{lm} F_{ik} -\delta_{in}\delta_{lm} F_{jk} -\delta_{jn}\delta_{km} F_{il} + \delta_{in}\delta_{km} F_{jl} \right] = \\
\frac12 \left[ \sum_{ik} v_{inkm} F_{ik} - \sum_{jk} v_{njkm} F_{jk} - \sum_{il} v_{inml} F_{il} + \sum_{jl} v_{njml} F_{jl} \right] = \\
-\sum_{ij} F_{ij} \left(v_{inmj} - v_{injm} \right)
\end{multline}
$$ $$
where I used the $v_{ijkl} = v_{jilk}$ symmetry from Coulomb. which simplifies the interaction to:
For a tight-binding grid, the mean-field correction simplifies to:
$$ $$
\begin{multline}
V_{nm} = - \sum_{ij} F_{ij} \left(v_{inmj} - v_{injm} \right) = \\ V_{nm} = - \sum_{ij} F_{ij} \left(v_{inmj} - v_{injm} \right) = \\
-\sum_{ij}F_{ij} v_{in} \delta_{im} \delta_{nj} + \sum_{ij}F_{ij} v_{in} \delta_{ij} \delta_{nm} = \\ -\sum_{ij}F_{ij} v_{in} \delta_{im} \delta_{nj} + \sum_{ij}F_{ij} v_{in} \delta_{ij} \delta_{nm} = \\
-F_{mn} v_{mn} + \sum_{i} F_{ii} v_{in} \delta_{nm} -F_{mn} v_{mn} + \sum_{i} F_{ii} v_{in} \delta_{nm}
\end{multline}
$$ $$
the first term is the exchange interaction whereas the second one is the direct interaction. the first term is the exchange interaction whereas the second one is the direct interaction.
Similarly, the constant offset term reads:
$$
\begin{multline}
V_0 = \frac{1}{2} \sum_{ijkl} v_{ijkl} \left(F_{jl} F_{ik} - F_{jk} F_{il} \right) = \\
\frac{1}{2} \sum_{ijkl} v_{ij} \delta_{ik} \delta_{jl} \left(F_{jl} F_{ik} - F_{jk} F_{il}\right) \\
= \frac{1}{2} \sum_{ij} v_{ij} \left(F_{ii} F_{jj} - F_{ji} F_{ij}\right)
\end{multline}
$$
where we identify the first term as the exchange (mixes indices) and the right one as the direct (diagonal in indices).
## Translational Invariance
The above assumed a finite tight-binding model - all $nm$-indices contain the position of all atoms (among other dof). In this section tho we want to consider an infinite system with translational invariance.
To begin with we deconstruct a general matrix $O_{nm}$ into the cell degrees of freedom ($nm$) and the position of the the cell itself ($ij$):
$$
O_{nm} \to O^{ij}_{nm}
$$
and we will Fourier transform the upper indices into k-space:
$$
O_{mn}(k) = \sum_{ij} O_{nm}^{ij} e^{-i k (R_i-R_j)}
$$
where I assumed $O$ (and thus all operators I will consider here) is local and thus diagonal in k-space.
Now lets rewrite our main result in the previous section using our new notation:
$$
V_{nm}^{ij} =-F_{mn}^{ij} v_{mn}^{ij} + \sum_{r,p} F_{pp}^{rr} v_{pn}^{rj} \delta_{nm} \delta^{ij}
$$
Lets first consider the second (direct) term. Lets express the corresponding $F$ term in k-space:
$$
F_{pp}^{rr} = \int e^{i k (R_r-R_r)} F_{pp}(k) dk = \int F_{pp}(k) dk
$$
Notice that in the final expression, there is no $rr$ dependence and thus this term is cell-periodic. Therefore, we shall redefine it as cell electron density $\rho$:
$$
F_{pp}^0 = F_{pp}(R = 0) = \int F_{pp}(k) dk
$$
Now since $\rho$ has no $r$ dependence, we can proceed with the sum:
$$
\sum_{r} v_{pn}^{rj} = \int v_{pn}(k) e^{ik R_j} \sum_{r} e^{-i k R_r} dk = \int v_{pn}(k) e^{ik R_j} \delta_{k, 0} dk = v_{pn}(0)
$$
We are finally ready to Fourier transform the main result. Invoking convolution theorem and the results above gives us:
$$
V_{nm}(k) = \sum_{p} F_{pp}^0 v_{pn}(0) \delta_{nm} -F_{mn}(k) \circledast v_{mn}(k) = V_n^D - F_{mn}(k) \circledast v_{mn}(k)
$$
which does make sense. The first term (direct) is a potential term coming from the mean-field and the second term (exchange) is purely responsible for the hopping.
The constant offset is:
$$
V_0 = \frac{1}{2} \sum_{r,s} \rho_r v_{rs}(0) \rho_s- \\ \frac{1}{2} tr\left[\int_{BZ} \left(F \circledast v\right)(k) F(k) dk \right]
$$
## Short-Range interactions
In the case of short-range interactions, it is much more convenient to go back to real space to both store objects and perform the operations. In real space the mean-field part of the Hamiltonian reads:
$$
V_{nm}(\mathbf{R}) = V_n^D \delta(\mathbf{R}) - F_{mn}(\mathbf{R}) v_{mn}(\mathbf{R})
$$
(the first term might need some prefactor from Fourier transformation)
where $\mathbf{R}$ is a sequence of integers representing real-space unit cell indices.
### Proposed Algorithm
Given an initial Hamiltonian $H_0 (R)$ and the interaction term $v(R)$ in real-space, the mean-field algorithm is the following:
0. Start with a mean-field guess in real-space: $V(R)$.
1. Fourier transform tight-binding model and the mean-field in real space to a given k-grid: $H_0(R) + V(R) \to H_0(k) + V(k)$
2. Diagonalize and evaluate the density matrix: $H_0(k) + V(k) \to F(k)$
3. Fourier transform the density matrix back to real-space: $F(k) \to F(R)$
4. Evaluate the new mean-field Hamiltonian $V(R)$ according to the equation above.
5. Evaluate self-consistency metric (could be based either on $V(R/k)$ or $F(R/k)$). Based on that, either stop or go back to 1 with a modified $V(R)$ starting guess.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment