Skip to content
Snippets Groups Projects
Commit 044cd835 authored by Bowy La Riviere's avatar Bowy La Riviere
Browse files

another attempt

parent 41313665
Branches
No related tags found
1 merge request!104lecture 10 solutions
Pipeline #57544 passed
......@@ -141,19 +141,13 @@ plt.show()
## Exercise 4: Structure factors
1.
$S(\mathbf{G}) = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi (h+k+l)})$
2.
Solving for $h$, $k$, and $l$ results in
1,2
$$
S(\mathbf{G}) =
S(\mathbf{G}) = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi (h+k+l)}) =
\begin{cases}
2f, \: \mathrm{if\: h+k+l\: is \:even}\\
0, \: \mathrm{if\: h+k+l\: is \:odd}.
\end{cases}
2f & \text{if $h+k+l$ is even}\\
0 & \text{if $h+k+l$ is odd}
\end{cases}
$$
Thus if $h+k+l$ is odd, diffraction peaks dissapear
......@@ -165,10 +159,9 @@ Let $f_1 \neq f_2$, then
$$
S(\mathbf{G}) =
\begin{cases}
f_1+f_2, \: \mathrm{if\: h+k+l\: is \:even}\\
f_1-f_2, \: \mathrm{if\: h+k+l\: is \:odd}.
\end{cases}
$$
f_1+f_2 & \text{if $h+k+l$ is even}\\
f_1-f_2 & \text{if $h+k+l$ is odd}
\end{cases}
4.
Due to bcc systematic absences, the peaks from lowest to largest angle are:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment