An extra observation: regardless of where $E_F$ is located, $n_e n_h = N_C N_V e^{-(E_c-E_v)/kT} \equiv n_i^2$.
An extra observation: regardless of where $E_F$ is located, $n_e n_h = N_C N_V e^{-E_g/kT} \equiv n_i^2$, where $E_g=E_c-E_v$ is the band gap of the semiconductor.
$n_i$ is the **intrinsic carrier concentration**, and for a pristine semiconductor $n_e = n_h = n_i$.