Skip to content
Snippets Groups Projects
Commit 3faec748 authored by Bowy La Riviere's avatar Bowy La Riviere
Browse files

Updates some answers

parent 01cb8ac4
No related branches found
No related tags found
No related merge requests found
Pipeline #52211 failed
......@@ -40,21 +40,21 @@ Comparing total and free electron density, only few electrons are available for
2.
$$
g_{1D}(k)dk = \left(\frac{L}{2\pi}\right) 2 \mathrm{d} k
g_{1D}(k)\textrm{d} k = \left(\frac{L}{2\pi}\right) 2 \mathrm{d} k
$$
The factor 2 is due to positive and negative $k$-values having equal enery
$$
g_{2D}(k)dk = \left(\frac{L}{2\pi}\right)^2 2\pi k \mathrm{d} k
g_{2D}(k)\textrm{d} k = \left(\frac{L}{2\pi}\right)^2 2\pi k \mathrm{d} k
$$
$$
g_{3D}(k)dk = \left(\frac{L}{2\pi}\right)^3 4\pi k^2 \mathrm{d} k
g_{3D}(k)\textrm{d} k = \left(\frac{L}{2\pi}\right)^3 4\pi k^2 \mathrm{d} k
$$
3.
$$
\begin{align}
g(k)dk &= \left(\frac{L}{2\pi}\right)^n S_{n-1}(k)dk \\
&= \left(\frac{L}{2\pi}\right)^n \frac{2\pi^{\frac{n}{2}}k^{n-1}}{\Gamma(\frac{n}{2})}dk
g(k)\textrm{d} k &= \left(\frac{L}{2\pi}\right)^n S_{n-1}(k)\textrm{d} k \\
&= \left(\frac{L}{2\pi}\right)^n \frac{2\pi^{\frac{n}{2}}k^{n-1}}{\Gamma(\frac{n}{2})}\textrm{d} k
\end{align}
$$
......@@ -62,10 +62,10 @@ $$
5.
$$
g(\varepsilon)d\varepsilon = 2_s g(k) dk
g(\varepsilon)\textrm{d} \varepsilon = 2_s g(k) \textrm{d} k
$$
$$
g(\varepsilon)=2_sg(k(\varepsilon))\frac{dk}{d\varepsilon}
g(\varepsilon)=2_sg(k(\varepsilon))\frac{\textrm{d} k}{\textrm{d} \varepsilon}
$$
$$
g(\varepsilon) = \frac{2_s}{\Gamma(\frac{n}{2})}\left(\frac{L}{\hbar}\sqrt{\frac{m}{2\pi}}\right)^n (\varepsilon)^{\frac{n}{2}-1}
......@@ -73,24 +73,29 @@ $$
6.
$$
N = \int_{0}^{\infty}g(\varepsilon)n_F(\beta(\varepsilon-\mu))d\varepsilon = \frac{2}{\Gamma(\frac{n}{2})}\left(\frac{L}{\hbar}\sqrt{\frac{m}{2\pi}}\right)^n\int_{0}^{\infty}\frac{(\varepsilon)^{\frac{n}{2}-1}}{e^{\frac{\varepsilon-\mu}{k_BT}}+1}d\varepsilon
N = \int_{0}^{\infty}g(\varepsilon)n_F(\beta(\varepsilon-\mu))\textrm{d} \varepsilon = \frac{2}{\Gamma(\frac{n}{2})}\left(\frac{L}{\hbar}\sqrt{\frac{m}{2\pi}}\right)^n\int_{0}^{\infty}\frac{(\varepsilon)^{\frac{n}{2}-1}}{e^{\frac{\varepsilon-\mu}{k_BT}}+1}\textrm{d} \varepsilon
$$
Total energy: $E = \int_{0}^{\infty} g(\varepsilon) n_{F}(\beta (\varepsilon - \mu)) \varepsilon d\varepsilon $
Total energy: $E = \int_{0}^{\infty} g(\varepsilon) n_{F}(\beta (\varepsilon - \mu)) \varepsilon \textrm{d} \varepsilon $
### Exercise 3: a hypothetical material
1.
$$
E = \int_{0}^{\infty}\varepsilon g(\varepsilon)f(\varepsilon)d\varepsilon = 2.10^{10}\int_{0}^{\infty}\frac{\varepsilon^{\frac{3}{2}}}{e^\frac{\varepsilon-5.2}{k_BT}+1}d\varepsilon
E = \int_{0}^{\infty}\varepsilon g(\varepsilon) n_{F}(\beta (\varepsilon - \mu)) \textrm{d} \varepsilon = 2.10^{10}eV^{-\frac{3}{2}} \int_{0}^{\infty}\frac{\varepsilon^{\frac{3}{2}}}{e^\frac{\varepsilon-5.2}{k_BT}+1} \textrm{d} \varepsilon
$$
2.
Substitute T=0 in the integral expression for total energy to find the ground state energy.
$$
E = \frac{4}{5} (5.2)^{\frac{5/2}} 10^{10} eV
$$
3.
$$
\Delta E = \frac{\pi^2}{6}(k_B T)^2\frac{\partial}{\partial \varepsilon}\left(\varepsilon g(\varepsilon)\right)\bigg|_{\varepsilon=\varepsilon _F}
\begin{align}
E(T)-E(T=0) &= \frac{\pi^2}{6}(k_B T)^2\frac{\partial}{\partial \varepsilon}\left(\varepsilon g(\varepsilon)\right)\bigg|_{\varepsilon=\varepsilon _F}\\
&\approx 8.356 10^8 eV
\end{align}
$$
5.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment