Skip to content
Snippets Groups Projects
Commit 710f0714 authored by Sathish Kumar RK's avatar Sathish Kumar RK
Browse files

adding random walk plot

parent d7379227
No related branches found
No related tags found
1 merge request!56Random walk plot
Pipeline #27701 passed
......@@ -25,6 +25,45 @@ Ohm's law states that $V=IR=I\rho\frac{l}{A}$. In this lecture we will investiga
- At each scattering event an electron returns to momentum ${\bf p}=0$.
- In-between scattering events electrons respond to the Lorentz force ${\bf F}_{\rm L}=-e\left({\bf E}+{\bf v}\times{\bf B}\right)$.
```python
import numpy as np
import matplotlib.pyplot as plt
walker_number = 20 # number of particles
tau = 1 # relaxation time
gamma = .3 # dissipation strength
a = 1 # acceleration
dt = .1 # infinitesimal
T = 20 # simulation time
v = np.zeros((2, int(T // dt), walker_number), dtype=float)
scattering_events = np.random.binomial(1, dt/tau, size=v.shape[1:])
angles = np.random.uniform(high=2*np.pi, size=scattering_events.shape) * scattering_events
rotations = np.array(
[[np.cos(angles), np.sin(angles)],
[-np.sin(angles), np.cos(angles)]]
)
for step in range(1, v.shape[1]):
v[:, step] = v[:, step-1]
v[0, step] += a * dt
v[:, step] = np.einsum(
'ijk,jk->ik',
rotations[:, :, step-1, :],
v[:, step, :]
) * (1 - gamma * scattering_events[step-1])
r = np.cumsum(v * dt, axis=1)
scattering_positions = np.copy(r)
scattering_positions[:, ~scattering_events.astype(bool)] = np.nan
plt.plot(*r[:, :100], alpha=.5, c='#1f77b4');
plt.scatter(*scattering_positions[:, :100], s=10);
plt.axis('off');
```
We start by considering only an electric field (_i.e._ ${\bf B}=0$). What velocity do electrons acquire in-between collisions?
$$
......@@ -124,4 +163,4 @@ $$\mathbf{E} = \begin{pmatrix} \rho_{xx} & \rho_{xy} \\ \rho_{yx} & \rho_{yy} \e
2. Invert the resistivity matrix to obtain the conductivity matrix $$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} $$, allowing you to express $\mathbf{J}$ as a function of $\mathbf{E}$.
3. Sketch $\sigma_{xx}$ and $\sigma_{xy}$ as a function of the magnetic field $\bf B$.
4. Give the definition of the Hall coefficient. What does the sign of the Hall coefficient indicate?
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment