2. Invert the resistivity matrix to obtain the conductivity matrix $$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\\sigma_{yx} & \sigma_{yy} \end{pmatrix} $$, allowing you to express $\mathbf{J}$ as a function of $\mathbf{E}$.
2. Invert the resistivity matrix to obtain the conductivity matrix $$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\\sigma_{yx} & \sigma_{yy} \end{pmatrix} $$, allowing you to express $\mathbf{J}$ as a function of $\mathbf{E}$.
3. Sketch $\sigma_{xx}$ and $\sigma_{xy}$ as a function of the magnetic field $\bf B$.
3. Sketch $\sigma_{xx}$ and $\sigma_{xy}$ as a function of the magnetic field $\bf B$.
4. Give the definition of the Hall coefficient. What does the sign of the Hall coefficient indicate?
4. Give the definition of the Hall coefficient. What does the sign of the Hall coefficient indicate?