Skip to content
Snippets Groups Projects
Commit 8e84c6e0 authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 11_nearly_free_electron_model_solutions.md - update

parent 2925f7b3
No related branches found
No related tags found
No related merge requests found
Pipeline #59725 passed
......@@ -147,7 +147,7 @@ Note that the last term represents the change in energy of the wavefunction $|n\
$$
\langle n |H_\overline{n}|n\rangle = -\kappa \lambda \sum_{m \neq 0 }\int e^{-2\kappa|x|}\delta(x-ma) = -\kappa \lambda \sum_{m \neq 0 } e^{-2\kappa|ma|} = -2\kappa\lambda(\frac{1}{1-e^{-2\kappa a}}-1)
$$
Note that the result should not depend on $n$, so we chose $n=0$ for convenience.
Note that the result should not depend on $n$, so we chose $n=0$ for convenience.
Similarly, we can calculate
$$
......@@ -163,6 +163,15 @@ and
=& -\kappa \lambda \sum_{m \neq 0 } e^{-\kappa a|m-1|} e^{-\kappa a |m|} =-\kappa \lambda(e^{ka}+e^{-ka}) \sum_{m=1}^{m=\infty} e^{-2\kappa a m}
\end{align}
In the limit $\kappa a \gg 1$ (i.e., where the distance between the delta functions is large compared to the width of $|n\rangle$), the onsite energy becomes
$$
\langle n|H|n \rangle = \epsilon_0 - 2\kappa \lambda e^{-2\kappa a}
$$
and the hopping becomes
$$
\langle n-1|H|n \rangle = (\epsilon_0 \kappa a - \kappa \lambda) e^{-\kappa a}
$$
### Subquestion 4
| .. | Lower Band minimum | Lower Band Width|
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment