Skip to content
Snippets Groups Projects
Commit ad91c64e authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 5_atoms_and_lcao_solutions.md - more fixes

parent 6f7e8422
No related branches found
No related tags found
No related merge requests found
Pipeline #91633 passed
......@@ -72,19 +72,19 @@ $$
$$
\hat{H} = \begin{pmatrix}
E_0 & -t\\
-t & E_0
E_0 & -t \\
-t & E_0
\end{pmatrix} +e\mathcal{E}\begin{pmatrix}
\langle 1|\hat{x}|1\rangle & \langle 1|\hat{x}|2\rangle\\
\langle 1|\hat{x}|1\rangle & \langle 1|\hat{x}|2\rangle \\
\langle 2|\hat{x}|1\rangle & \langle 2|\hat{x}|2\rangle
\end{pmatrix} = \begin{pmatrix}
E_0 - \gamma & -t\\
-t & E_0 + \gamma
E_0-\gamma & -t \\
-t & E_0+\gamma
\end{pmatrix},
$$
where we defined $\gamma = e d \mathcal{E}/2$ and used
$$
1|\hat{x}|1 = -\frac{d}{2}.
\langle 1|\hat{x}|1\rangle = -\frac{d}{2}.
$$
#### Question 3.
......@@ -114,5 +114,5 @@ $$
#### Question 4.
We find the polarization using
$$
P=2e\langle\psi|\hat{x}|\psi\rangle = 2e\phi_1^2\langle 1|\hat{x}| 1 \rangle + \phi_1^2\langle 2|\hat{x}| 2 \rangle = ed(\phi_2^2-\phi_1^2) =ed\frac{\eta}{1-\eta}
P=2e\langle\psi|\hat{x}|\psi\rangle = 2e\left(\phi_1^2\langle 1|\hat{x}| 1 \rangle + \phi_1^2\langle 2|\hat{x}| 2 \rangle \right) = ed(\phi_2^2-\phi_1^2) =ed\frac{\eta}{1-\eta}
$$
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment