Skip to content
Snippets Groups Projects
Commit ad91c64e authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 5_atoms_and_lcao_solutions.md - more fixes

parent 6f7e8422
No related branches found
No related tags found
No related merge requests found
Pipeline #91633 passed
...@@ -72,19 +72,19 @@ $$ ...@@ -72,19 +72,19 @@ $$
$$ $$
\hat{H} = \begin{pmatrix} \hat{H} = \begin{pmatrix}
E_0 & -t\\ E_0 & -t \\
-t & E_0 -t & E_0
\end{pmatrix} +e\mathcal{E}\begin{pmatrix} \end{pmatrix} +e\mathcal{E}\begin{pmatrix}
\langle 1|\hat{x}|1\rangle & \langle 1|\hat{x}|2\rangle\\ \langle 1|\hat{x}|1\rangle & \langle 1|\hat{x}|2\rangle \\
\langle 2|\hat{x}|1\rangle & \langle 2|\hat{x}|2\rangle \langle 2|\hat{x}|1\rangle & \langle 2|\hat{x}|2\rangle
\end{pmatrix} = \begin{pmatrix} \end{pmatrix} = \begin{pmatrix}
E_0 - \gamma & -t\\ E_0-\gamma & -t \\
-t & E_0 + \gamma -t & E_0+\gamma
\end{pmatrix}, \end{pmatrix},
$$ $$
where we defined $\gamma = e d \mathcal{E}/2$ and used where we defined $\gamma = e d \mathcal{E}/2$ and used
$$ $$
1|\hat{x}|1 = -\frac{d}{2}. \langle 1|\hat{x}|1\rangle = -\frac{d}{2}.
$$ $$
#### Question 3. #### Question 3.
...@@ -114,5 +114,5 @@ $$ ...@@ -114,5 +114,5 @@ $$
#### Question 4. #### Question 4.
We find the polarization using We find the polarization using
$$ $$
P=2e\langle\psi|\hat{x}|\psi\rangle = 2e\phi_1^2\langle 1|\hat{x}| 1 \rangle + \phi_1^2\langle 2|\hat{x}| 2 \rangle = ed(\phi_2^2-\phi_1^2) =ed\frac{\eta}{1-\eta} P=2e\langle\psi|\hat{x}|\psi\rangle = 2e\left(\phi_1^2\langle 1|\hat{x}| 1 \rangle + \phi_1^2\langle 2|\hat{x}| 2 \rangle \right) = ed(\phi_2^2-\phi_1^2) =ed\frac{\eta}{1-\eta}
$$ $$
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment