Skip to content
Snippets Groups Projects
Verified Commit af5c176b authored by Anton Akhmerov's avatar Anton Akhmerov
Browse files

typo fixes

parent 252055d9
No related branches found
No related tags found
1 merge request!77Solutions to lecture 5: LCAO model
Pipeline #29025 passed
...@@ -7,22 +7,24 @@ ...@@ -7,22 +7,24 @@
2. The atomic number of Tungsten is 74: 2. The atomic number of Tungsten is 74:
$$ $$
1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^4 1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^4
$$ $$
3. 3.
$$ $$
Cu &= [Ar]4s^23d^9 \begin{align}
Pd &= [Kr]5s^24d^8 \textrm{Cu} &= [\textrm{Ar}]4s^23d^9
Ag &= [Kr]5s^24d^9 \textrm{Pd} &= [\textrm{Kr}]5s^24d^8
Au &= [Xe]6s^24f^145d^9 \textrm{Ag} &= [\textrm{Kr}]5s^24d^9
\textrm{Au} &= [\textrm{Xe}]6s^24f^145d^9
\end{align}
$$ $$
### Question 2 ### Question 2
1. 1.
$$ $$
\psi(x) = \psi(x) =
\begin{cases} \begin{cases}
&\sqrt{\kappa}e^{\kappa(x-x_1)}, x<x_1\\ &\sqrt{\kappa}e^{\kappa(x-x_1)}, x<x_1\\
&\sqrt{\kappa}e^{-\kappa(x-x_1)}, x>x_1 &\sqrt{\kappa}e^{-\kappa(x-x_1)}, x>x_1
...@@ -31,9 +33,9 @@ $$ ...@@ -31,9 +33,9 @@ $$
Where $\kappa = \sqrt{\frac{-2mE}{\hbar^2}} = \frac{mV_0}{\hbar^2}$. Where $\kappa = \sqrt{\frac{-2mE}{\hbar^2}} = \frac{mV_0}{\hbar^2}$.
The energy is given by $\epsilon1 = \epsilon2 = -\frac{mV_0}{\hbar^2}$ The energy is given by $\epsilon_1 = \epsilon_2 = -\frac{mV_0}{\hbar^2}$
The wavefunction of a single delta peak is given by The wave function of a single delta peak is given by
$$ $$
\psi_1(x) = \frac{\sqrt{mV_0}}{\hbar}e^{-\frac{mV_0}{\hbar^2}|x-x_1|} \psi_1(x) = \frac{\sqrt{mV_0}}{\hbar}e^{-\frac{mV_0}{\hbar^2}|x-x_1|}
...@@ -41,18 +43,18 @@ $$ ...@@ -41,18 +43,18 @@ $$
$\psi_2(x)$ can be found by replacing $x_1$ by $x_2$ $\psi_2(x)$ can be found by replacing $x_1$ by $x_2$
2. 2.
$$ $$
H = -\frac{mV_0^2}{\hbar^2}\begin{pmatrix} H = -\frac{mV_0^2}{\hbar^2}\begin{pmatrix}
1/2+\exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) & 1/2+\exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) &
\exp(\frac{mV_0}{\hbar^2}(x_2-x_1))\\ \exp(\frac{mV_0}{\hbar^2}(x_2-x_1))\\
\exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) & \exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) &
1/2+\exp(+\frac{mV_0}{\hbar^2}(x_2-x_1)) 1/2+\exp(+\frac{mV_0}{\hbar^2}(x_2-x_1))
\end{pmatrix} \end{pmatrix}
$$ $$
3. 3.
$$ $$
\epsilon_{\pm} = \beta(3/2+\cosh{2\alpha}+2\cosh{\alpha}\pm \cosh{\alpha}) \epsilon_{\pm} = \beta(3/2+\cosh{2\alpha}+2\cosh{\alpha}\pm \cosh{\alpha})
...@@ -104,4 +106,3 @@ $$ ...@@ -104,4 +106,3 @@ $$
$$ $$
P = -\frac{2\gamma^2}{\mathcal{E}}(\frac{1}{\sqrt{\gamma^2+t^2}}) P = -\frac{2\gamma^2}{\mathcal{E}}(\frac{1}{\sqrt{\gamma^2+t^2}})
$$ $$
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment