Skip to content
Snippets Groups Projects
Commit c78ce08a authored by Anton Akhmerov's avatar Anton Akhmerov
Browse files

better arrow

parent aeddc9d4
No related branches found
No related tags found
No related merge requests found
......@@ -5,7 +5,7 @@ _Based on chapter 2 of the book_
In this lecture we will:
- discuss specific heat of a solid based on atomic vibrations (_phonons_)
- disregard periodic lattice $\rightarrow$ consider homogeneous medium
- disregard periodic lattice $\Rightarrow$ consider homogeneous medium
- _(chapter 9: discuss phonons in terms of atomic masses and springs)_
- discuss the Einstein model
- discuss the Debye model
......@@ -19,10 +19,10 @@ This can be explained by considering a _quantum_ harmonic oscillator:
$$\varepsilon_n=\left(n+\frac{1}{2}\right)\hbar\omega$$
Phonons are bosons $\rightarrow$ they follow Bose-Einstein statistics.
Phonons are bosons $\Rightarrow$ they follow Bose-Einstein statistics.
$$
n(\omega,T)=\frac{1}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1}\rightarrow\bar{\varepsilon}=\frac{1}{2}\hbar\omega+\frac{\hbar\omega}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1}
n(\omega,T)=\frac{1}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1}\Rightarrow\bar{\varepsilon}=\frac{1}{2}\hbar\omega+\frac{\hbar\omega}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1}
$$
![](figures/bose_einstein.svg)
......@@ -58,8 +58,6 @@ $$E=\int\limits_0^\infty\left(\frac{1}{2}\hbar\omega+\frac{\hbar\omega}{ {\rm e}
$g(\omega)$ is the _density of states_: the number of normal modes found at each position along the $\omega$-axis. How do we calculate $g(\omega)$?
#### Reciprocal space, periodic boundary conditions
Each normal mode can be described by a _wave vector_ ${\bf k}$. A wave vector represents a point in _reciprocal space_ or _k-space_. We can find $g(\omega)$ by counting the number of normal modes in k-space and then converting those to $\omega$.
......@@ -96,7 +94,7 @@ Substitute $x\equiv\frac{\hbar\omega}{k_{\rm B}T}$:
$$\Rightarrow E=E_{\rm Z}+\frac{3V}{2\pi^2 v_{\rm s}^3}\frac{\left(k_{\rm B}T\right)^4}{\hbar^3}\int\limits_0^\infty\frac{x^3}{ {\rm e}^x-1}{\rm d}x$$
The integral on the right is a constant, $\left(\frac{\pi^4}{15}\right)$ $\rightarrow$ $C=\frac{ {\rm d}E}{ {\rm d}T}\propto T^3$.
The integral on the right is a constant, $\left(\frac{\pi^4}{15}\right)$ $\Rightarrow$ $C=\frac{ {\rm d}E}{ {\rm d}T}\propto T^3$.
#### Debye's interpolation for medium T
The above approximation works very well at low temperature. But at high temperature, $C$ should of course settle at $3k_{\rm B}$ (the Dulong-Petit value). The reason why the model breaks down, is that it assumes that there is an infinite number of harmonic oscillators up to infinite frequency.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment