Skip to content
Snippets Groups Projects
Commit e577de83 authored by Radoica Draškić's avatar Radoica Draškić
Browse files

Add solutions to excercise 3 in lecture 1.

parent 07547c35
No related branches found
No related tags found
1 merge request!51Update src/solutions/1_einstein_model.md, mkdocs.yml files
Pipeline #27647 passed
......@@ -77,3 +77,19 @@ $$
where we used $\sum_{n = 0}^{\infty}nr^n = \frac{r}{(1 - r)^2}$.
### Exercise 3: Total heat capacity of a diatomic material.
1.
Use the formula $\omega = \sqrt{\frac{k}{m}}$.
2.
$E = \frac{N_{^6Li}}{N}\hbar\omega_{^6Li}(2 + 1/2)+\frac{N_{^7Li}}{N}\hbar\omega_{^7Li}(4 + 1/2)$.
3.
$E = \hbar\omega_{^6Li}\left(n_B(\beta\hbar\omega_{^6Li}) + \frac{1}{2}\right) + \hbar\omega_{^7Li}\left(n_B(\beta\hbar\omega_{^7Li}) + \frac{1}{2}\right)$.
4.
$C = C_{^6Li} + C_{^7Li}$ where the heat capacities are calculated with the formula from Excercise 2.4.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment