Skip to content
Snippets Groups Projects
Commit faa28399 authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 5_atoms_and_lcao_solutions.md - corrected solution last ex

parent 99adfbb4
No related branches found
No related tags found
No related merge requests found
Pipeline #91629 passed
......@@ -91,26 +91,28 @@ $$
The eigenstates of the Hamiltonian are given by:
$$
E_{\pm} = E_0\pm\sqrt{t^2+\gamma^2}
E_{\mp} = E_0\pm\sqrt{t^2+\gamma^2}
$$
Calling the elements of the eigenvector $\alpha$ and $\beta$, we find
Calling the elements of the eigenvector $\phi_1$ and $\phi_2$, we find
$$
\alpha(E_0-\gamma)-\beta t = \alpha E_\pm
\phi_1(E_0-\gamma)-\phi_2 t = \phi_1 E_\pm
$$
From this we find
From this we find for the ground state
$$
\beta = -\frac{E_\pm- E_0 + \gamma}{t}\alpha = -\frac{\pm\sqrt{t^2+ \gamma^2} + \gamma }{t}\alpha
\phi_2 = -\frac{E_+- E_0 + \gamma}{t}\phi_1 = \frac{\sqrt{t^2+ \gamma^2} - \gamma }{t}\phi_1
$$
Then, using the normalization condition $\alpha^2+\beta^2$=1, we find the normalized eigenfunction.
%The ground state wave function is:
%$$
% |\psi⟩ &= \frac{\gamma+\sqrt{t^2+\gamma^2}}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|1⟩+\frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|2⟩
% \end{split}
%$$
For simplicity, we now assume that the electric field is small, such that $\gamma/t=\eta \ll 1$. We get
$$
\phi_2 \approx (1-\eta)\phi_1
$$
Then, using the normalization condition $\phi_1^2+\phi_2^2$=1, we find
$$
\phi_1\approx\frac{1}{\sqrt{2(1-\eta)}}
$$
#### Question 4.
We find the polarization using
$$
P = -\frac{2\gamma^2}{\mathcal{E}}(\frac{1}{\sqrt{\gamma^2+t^2}})
P=2e\langle\psi|\hat{x}|\psi\rangle = 2e\phi_1^2\langle 1|\hat{x}| 1 \rangle + \phi_1^2\langle 2|\hat{x}| 2 \rangle = ed(\phi_2^2-\phi_1^2) =ed\frac{\eta}{1-\eta}
$$
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment