Skip to content
Snippets Groups Projects
Commit 999b092a authored by T. van der Sar's avatar T. van der Sar
Browse files

Update docs/2_debye_model_solutions.md

parent 638948a5
Branches
No related tags found
No related merge requests found
......@@ -112,53 +112,56 @@ Here, we analyze the phonon energy and heat capacity of a two-dimensional Debye
3. In the low temperature limit, the high-energy modes are not excited so we can safely let the upper boundary of the integral go to infinity. For convenience, we write $g(\omega) = alpha \omega$, with $\alpha = \frac{L^2}{\pi v_s^2}$. We get
$$
E = \int_0^\omega_D\frac{\hbar\omega g(\omega)}{e^{\hbar\omega/k_B T}- 1}d\omega = \alpha\frac{k^3T^3}{\hbar^2}\int_)^\infty\frac{x^2}{e^x-1}dx
E = \int_0^\omega_D\frac{\hbar\omega g(\omega)}{e^{\hbar\omega/k_B T}- 1}d\omega \approx \alpha\frac{k^3T^3}{\hbar^2}\int_0)^\infty\frac{x^2}{e^x-1}dx
$$
From which we find $C_v = dE/dT =K T^2$ with
From which we find $C_v = dE/dT = K T^2$, with
$$
K = 3\alpha\frac{k^3}{\hbar^2}\int_)^\infty\frac{x^2}{e^x-1}dx
$$
### Exercise 3: Longitudinal and transverse vibrations with different sounds velocities
1. The key idea is that the total energy in the individual harmonic oscillators (the vibrational modes) is the sum of the energies in the individual oscillators:
Neglecting the zero-point energy, the energy in the longitudinal modes is given by
1. The key idea is that the total energy in the individual harmonic oscillators (the vibrational modes) is the sum of the energies in the individual oscillators: $E = \int_0^{\omega_D}\frac{\hbar \omega g(\omega)}{e^{\beta\hbar\omega} - 1}d\omega + E_Z$. Using $g(\omega) = g_\parallel(\omega) + g_perp(\omega)$ with
$$
E_\parallel = \int_0^{\omega_D}g_\parallel(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} )d\omega
$$
\begin{align}
g_\parallel & = 1_p \frac{L^3}{2\pi^2} \frac{\omega^2}{v_\parallel^3}, \\
g_\perp = 2_p \frac{L^3}{2\pi^2} \frac{\omega^2}{v_\perp^3},
\end{align}
with $g_\parallel = 1_p \frac{L^3}{2\pi^2} \frac{\omega^2}{v_\parallel^3} $. Similarly, the energy in the transverse modes is
we get
$$
E_\perp = \int_0^{\omega_D}g_\perp(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} )d\omega
E = \frac{L^3 k_B^4 T^4}{2\pi^2\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1} {v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx.
$$
with $g_\perp = 2_p \frac{L^3}{2\pi^2} \frac{\omega^2}{v_\perp^3} $. Therefore, the total energy is
2. As in exercise 1, in the high-T limit, we have $\beta \rightarrow 0$. Therefore, $n_B \approx = k_BT/\hbar\omega$ and the integral for $E$ becomes:
$$
E = \frac{L^3}{2\pi^2} \left(\frac{1_p}{v_\parallel} + \frac{2_p}{v\perp} \right) \int_0^{\omega_D} \frac{\hbar\omega^3}{e^{\beta\hbar\omega} - 1} d\omega = \frac{L^3 k_B^4 T^4}{2\pi^2\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1} {v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx.
E = \int_0^\omega_D \hbar\omega n_B(\omega) g(\omega) d\omega \approx \int_0^\omega_D k_B T g(\omega) d\omega +E_Z = N_\text{modes} k_B T + E_Z
$$
and we are left with the Dulong-Petit law $C = 3N_\text{atoms}k_B$.
3. In the low temperature limit, we can let the upper integral boundary go to infinity as in exercise 1. This yields
2. As in exercise 1, in the high-T limit, we have $\beta \rightarrow 0$. Therefore, $n_B \approx = k_BT/\hbar\omega$. The integral becomes:
$$
E = \int_0^\omega_D \hbar\omega n_B(\omega) g(\omega) d\omega \approx \int_0^\omega_D k_B T g(\omega) d\omega = N_\text{modes} k_B T
C \approx \frac{2\pi^2k_B^4L^3}{15\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)T^3$, where we used that $\int_{0}^{\infty}\frac{x^3}{e^{x} - 1}dx = \frac{\pi^4}{15}.
$$
and we are left with the Dulong-Petit law $C = 3N_\text{atoms}k_B$.
3. In the low temperature limit we have $C \sim \frac{2\pi^2k_B^4L^3}{15\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)T^3$. We used that $\int_{0}^{\infty}\frac{x^3}{e^{x} - 1}dx = \frac{\pi^4}{15}$.
### Exercise 4: Anisotropic sound velocities.
In this case, the velocity depends on the direction. Note however that, in contrast with the previous exercise, the polarization does not affect the dispersion of the waves. We get
$$
E = 3\left(\frac{L}{2\pi}\right)^3\int d^3k\hbar\omega(\mathbf{k})\left(n_B(\beta\hbar\omega(\mathbf{k})) + \frac{1}{2}\right) = 3\left(\frac{L}{2\pi}\right)^3\frac{1}{v_xv_yv_z}\int d^3\kappa\frac{\hbar\kappa}{e^{\beta\hbar\kappa} - 1} + C,
E = 3_p\left(\frac{L}{2\pi}\right)^3\int \hbar\omega(\mathbf{k})\left(n_B(\beta\hbar\omega(\mathbf{k})) + \frac{1}{2}\right) d\mathbf{k} = 3_p \left(\frac{L}{2\pi}\right)^3\frac{1}{v_xv_yv_z}\int \frac{\hbar\kappa}{e^{\beta\hbar\kappa} - 1}d\mathbf{\kappa} + E_Z,
$$
where we used the substitutions $\kappa_x = k_xv_x,\kappa_y = k_yv_y, \kappa_z = k_zv_z$. Finally
$$
E = \frac{3\hbar L^3}{2\pi^2}\frac{1}{v_xv_yv_z}\int_0^{\kappa_D} d\kappa\frac{\kappa^3}{e^{\beta\hbar\kappa} - 1} + C = \frac{3L^3}{2\pi^2\hbar^3\beta^4}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} dx\frac{x^3}{e^{x} - 1} + C,
E = \frac{3_p\hbar L^3}{2\pi^2}\frac{1}{v_xv_yv_z}\int_0^{\kappa_D} \frac{\kappa^3}{e^{\beta\hbar\kappa} - 1}d \kappa + E_Z = \frac{3_pL^3}{2\pi^2\hbar^3\beta^4}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} \frac{x^3}{e^{x} - 1}dx + E_Z,
$$
hence $C = \frac{\partial E}{\partial T} = \frac{6k_B^4L^3T^3}{\pi^2\hbar^3}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} dx\frac{x^3}{e^{x} - 1}$. We see that the result is similar to the one with the linear dispersion, the only difference is the factor $1/v_xv_yv_z$ instead of $1/v^3$.
Therefore, $C = \frac{\partial E}{\partial T} = \frac{6k_B^4L^3T^3}{\pi^2\hbar^3}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} \frac{x^3}{e^{x} - 1}dx$. We see that the result is similar to the one with the linear dispersion, the only difference is the factor $1/v_xv_yv_z$ instead of $1/v^3$.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment