Skip to content
Snippets Groups Projects
Commit d239bbdc authored by Michael Wimmer's avatar Michael Wimmer
Browse files

Merge branch 'coordinates' into 'master'

Add lecture notes for coordinates

See merge request mathematics-for-quantum-physics/lectures!3
parents 22107969 561fa513
No related branches found
No related tags found
No related merge requests found
Showing
with 12479 additions and 34 deletions
......@@ -6,7 +6,8 @@ site_description: |
Lecture notes for TN3105 - Mathematics for Quantum Physics
nav:
- Intro: 'index.md'
- Coordinates: 'coordinates.md'
theme:
name: material
custom_dir: theme
......
......@@ -67,10 +67,7 @@ Complex numbers can be rendered on a two-dimensional (2D) plane, the
horizontal, which represents the real number 1, whereas the vertical
unit vector represents ${\rm i}$.
![image](complex_numbers_files/complex_numbers_5_0.pdf)
[\
]{}
![image](figures/complex_numbers_5_0.svg)
Note that the norm of $z$ is the length of this vector.
......@@ -80,10 +77,7 @@ Addition in the complex plane
Adding two numbers in the complex plane corresponds to adding the
horizontal and vertical components:
![image](complex_numbers_files/complex_numbers_8_0.pdf)
[\
]{}
![image](figures/complex_numbers_8_0.svg)
We see that the sum is found as the diagonal of a parallelogram spanned
by the two numbers.
......@@ -99,10 +93,7 @@ part. However, it is also possible to characterize that vector by its
*length* and *direction*, where the latter can be represented by the
angle the vector makes with the horizontal axis:
![image](complex_numbers_files/complex_numbers_10_0.pdf)
[\
]{}
![image](figures/complex_numbers_10_0.svg)
The angle with the horizontal axis is denoted by $\varphi$, just as in
the case of polar coordinates. In the context of complex numbers, this
......@@ -168,17 +159,13 @@ should be independent of $dz=dx + {\rm i} dy$! Thus, $f(z)$ is
differentiable only when
$$\frac{\partial u}{\partial x} + {\rm i} \frac{\partial v}{\partial x} = -{\rm i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}.$$
Equating the real and imaginary parts of the left and right hand side we
obtain the
TODO: Here was a remark environment
[ *Cauchy Riemann* differential equations:
obtain the *Cauchy Riemann* differential equations:
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} {~~~ \rm and ~~~ } \frac{\partial v}{\partial x} = -
\frac{\partial u}{\partial y}.$$ The derivative is then given as
$$\frac{df}{dz} = \frac{\partial u}{\partial x} + {\rm i} \frac{\partial v}{\partial x}.$$
A complex function whose real and imaginary part ($u$ and $v$) obey the
Cauchy-Riemann differential equations in a point $z$, is complex
differentiable at the point $z$. ]{}
differentiable at the point $z$.
Note that differentiability is a property which not only pertains to a
function, but also to a point.
......@@ -296,8 +283,6 @@ $$\tanh'(x) = 1 + \frac{\sinh^2 x}{\cosh^2 (x)} = - \frac{1}{\cosh^2(x)}.$$
Summary
=======
TODO: Here was the beginning of a mdframed env
- A complex number $z$ has the form $$z = a + b \rm i$$ where $a$ and
$b$ are both real, and $\rm i^2 = 1$. The real number $a$ is called
the *real part* of $z$ and $b$ is the *imaginary part*. Two complex
......@@ -345,22 +330,21 @@ TODO: Here was the beginning of a mdframed env
- Hyperbolic functions are defined as:
$$\sinh(z) = \frac{e^{z} - e^{-z}}{2}; \phantom{xxx} \cosh(z) = \frac{e^{z} + e^{-z}}{2}.$$
TODO: Here was the end of a mdframed env
Problems
========
1. [\[]{}D1[\]]{} Given $a=1+2\rm i$ and $b=4-2\rm i$, draw in the
1. [:grinning:] Given $a=1+2\rm i$ and $b=4-2\rm i$, draw in the
complex plane the numbers $a+b$, $a-b$, $ab$, $a/b$, $e^a$ and
$\ln(a)$.
2. [\[]{}D1[\]]{} Evaluate (i) $\rm i^{1/4}$, (ii)
2. [:grinning:] Evaluate (i) $\rm i^{1/4}$, (ii)
$\left(-1+\rm i \sqrt{3}\right)^{1/2}$, (iii) $\exp(2\rm i^3)$.
3. [\[]{}D1[\]]{} Evaluate $$\left| \frac{a+b\rm i}{a-b\rm i} \right|$$
3. [:grinning:] Evaluate $$\left| \frac{a+b\rm i}{a-b\rm i} \right|$$
for real $a$ and $b$.
4. [\[]{}D1[\]]{} Show that $\cos x = \cosh(\rm i x)$ and
4. [:grinning:] Show that $\cos x = \cosh(\rm i x)$ and
$\cos(\rm i x) = \cosh x$. Derive similar relations for $\sinh$ and
$\sin$.
......@@ -369,28 +353,28 @@ Problems
Also show that $\cosh x$ is a solution to the differential equation
$$y'' = \sqrt{1 + y'^2}.$$
5. [\[]{}D1[\]]{} Calculate the real part of
5. [:grinning:] Calculate the real part of
$\int_0^\infty e^{-\gamma t +\rm i \omega t} dt$ ($\omega$ and
$\gamma$ are real; $\gamma$ is positive).
6. [\[]{}D1[\]]{} Is the function $f(z) = |z| = \sqrt{x^2 + y^2}$
6. [:grinning:] Is the function $f(z) = |z| = \sqrt{x^2 + y^2}$
analytic on the complex plane or not? If not, where is the function
not analytic?
7. [\[]{}D1[\]]{} Show that the Cauchy-Riemann equations imply that the
7. [:grinning:] Show that the Cauchy-Riemann equations imply that the
real and imaginary part of a differentiable complex function both
represent solutions to the Laplace equation, i.e.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$
for the real part $u$ of the function, and similarly for the
imaginary part $v$.
8. [\[]{}D3[\]]{} Show that the set of points $z$ obeying
8. [:sweat:] Show that the set of points $z$ obeying
$$| z - \rm i a| = \lambda |z + \rm i a|,$$ with $a$ and $\lambda$
real, form a circle with radius $2|\lambda/(1-\lambda^2) a|$
centered on the point $\rm i a (1+\lambda^2)/(1-\lambda^2)$,
provided $\lambda \neq 1$. What is the set like for $\lambda = 1$?
9. [\[]{}D2[\]]{} In two dimensions, the Coulomb potential is
9. [:smirk:] In two dimensions, the Coulomb potential is
proportional to $\log |r|$. Viewing the 2D space as a complex plane,
this is $\log |z|$. Consider a system consisting of charges $q_i$
placed at ‘positions’ $z_i$, all close to the origin. The point $z$
......@@ -406,7 +390,7 @@ Problems
This is called a *multipole expansion*. A similar expansion exist in
three dimensions.
10. [\[]{}D2[\]]{} In this problem, we consider the function $1/z$ close
10. [:smirk:] In this problem, we consider the function $1/z$ close
to the real axis: $z=x-\rm i \epsilon$ where $\epsilon$ is small.
Show that the imaginary part of this function approaches $\pi$ times
the Dirac delta-function $\delta(x)$ for $\epsilon\rightarrow 0$. Do
......
---
title: Coordinates
---
# Cartesian coordinates
The most common coordinates are *Cartesian coordinates*, where we use a
number $n$ of perpendicular axes. The coordinates corresponding to these
axes are $x_j$ where $j=1, \ldots, n$.
Cartesian coordinates are simple, as the coordinate axis are simply
straight lines and perpendicular to each other. Due to this, it is
very easy to do calculations in Cartesian coordinates. For example,
the distance $\Delta s$ between two points $(x_1, x_2, \ldots, x_n)$
and $(x'_1, x'_2, \ldots, x'_n)$ is easily computed as
$$\Delta s^2 = (x'_1 - x_1)^2 + (x'_2 - x_2)^2 + \ldots + (x'_n - x_n)^2.$$
(A space with such a distance definition is called a *Euclidean
space*.)
In mathematics, we are often dealing with so-called *infinitesimally* small
distances, for example in the definition of derivatives and integrals.
In Cartesion coordinates the expressions for infinitesimal distances $ds$ and
infinitesimal volumes $dV$ are given as
$$ds = \sqrt{dx_1^2 + dx_2^2 + \ldots + dx_n^2}$$
and
$$dV = dx_1 dx_2 \ldots dx_N.$$
The formula for $dV$ also indicates that in Cartesian coordinates, the integral
over a volume can be expressed as individual integrals over all coordinate directions:
$\int dV = \idotsint dx_1 dx_2 \ldots dx_N$.
Cartesian coordinates are used a lot. They are particularly suitable for
infinite spaces or for rectangular volumes.
![image](figures/Coordinates_5_1.svg)
# Polar coordinates
## Definition
It often turns out useful to change to a different type of coordinate
system. For example, if you want to describe the vibrations of a
circular drum, polar coordinates turn out very convenient. These are
defined for a two-dimensional space (a plane). When using such
coordinates, a position on the plane is characterised by two
coordinates: the *distance* $r$ from the point to the origin and the
angle ($\varphi$). This is the angle between the line connecting the
point to the origin and the $x$-axis.
Note that each Cartesian coordinate has a *dimension* of length; in
polar coordinates, the radius $r$ has a dimension of *length*, whereas
the angular coordinate $\varphi$ is dimensionless.
![image](figures/Coordinates_7_0.svg)
In this plot you can distinguish the radial coordinate (0.2, 0.4 etc.)
from the angular one ($0^\circ$, $45^\circ$ etc.).
The plot below shows a point on a curve with the polar coordinates
$(r,\varphi)$ indicated. From this, we can see that the *Cartesian*
coordinates $(x,y)$ of the point are related to the polar ones as
follows:
$$\begin{equation} x = r \cos\varphi; \end{equation}$$
$$\begin{equation} y = r \sin \varphi.\end{equation}$$
![image](figures/Coordinates_9_0.svg)
The inverse relation is given as
$$\begin{equation} r=\sqrt{x^2 + y^2}; \label{rxy}\end{equation}$$
$$\begin{equation} \varphi=\begin{cases}
\arctan(y/x) & \text{$x>0$,}\\
\pi + \arctan(y/x) & \text{$x<0$ and $y>0$,}\\
-\pi + \arctan(y/x) & \text{$x<0$ and $y<0$.}
\end{cases} \label{phixy}\end{equation}$$
The last formula for $\varphi$ warrants a closer explanation: It is easy
to see that $\tan(\varphi)=y/x$ - but this is not a unique relation, due to
the fact that the $\tan$ has different branches. Convince yourself that
the expression above is correct for all the four sectors!
## Distances and areas
Now suppose we want to calculate the distance between two points, one
with polar coordinates $(r_1, \varphi_1)$, and the other with
$(r_2, \varphi_2)$. This looks like a difficult exercise. One possible
way to perform this is by translating the polar coordinates into
Cartesian coordinates and using the expression given above for this
distance: $$\Delta s^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2,$$ so
$$\Delta s^2 = (r_1\cos\varphi_1 - r_2 \cos \varphi_2)^2 + (r_1\sin\varphi_1 - r_2 \sin \varphi_2)^2$$
which is not a very convenient expression.
If we consider two points which are *very close*, the analysis
simplifies however. We can use the geometry of the problem to find the
distance (see the figure below).
![image](figures/Coordinates_11_0.svg)
When going from point 1 to point 2, we first traverse a small circular
arc of radius $r_1$ and then we move a small distance radially outward
from $r_1$ to $r_2$. Provided the difference between the angles
$\varphi_1$ and $\varphi_2$ is (very) small, these paths are
approximately perpendicular and we can use Pythagoras’ theorem to find
the distance $d s$. Note that the arc is approximately straight –
it has a length $r_1 d \varphi$, where
$d \varphi = \varphi_2-\varphi_1$. So we have:
$$d s^2 = (d r)^2 + (arc~length)^2 = (d r)^2 + r_1^2 (d \varphi)^2 .$$
We can use the same arguments also for the area: since the different
segments are approximately perpendicular, we find the area by simply
multiplying them:
$$dA = r dr d\varphi.$$
This is an important formula to remember for integrating in polar
coordinates! The extra $r$ that appears here can be intuitively
understood: the area swept by an angle difference $d\varphi$
*increases* as we move further away from the origin.
!!! check "Example: Integrating over a circular area"
To check the area element we just derived, let us compute a simple
integral. We compute the integral over a circle with radius $r_0$
with a very simple function that equals to $1$. In this case,
we expect to get as a result the are of the region we integrate over.
We find:
$$
\int_0^{2\pi} d\varphi \int_0^{r_0} r dr =\\
2\pi \int_0^{r_0} r dr = 2 \pi \frac{1}{2} r_0^2 = \pi r_0^2,
$$
which is indeed the area of a circle with radius 0.
## Converting derivatives between coordinate systems
Often, in physics important equations involve derivatives given in terms
of Cartesian coordinates. One prominent example are equations of the form
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)
f(x, y) = \ldots.$$
The derivative operator $\left(\frac{\partial^2}{\partial x^2} +
\frac{\partial^2}{\partial y^2}\right)$ is so common it has its own name:
the Laplacian (here for two-dimensional space).
Such an equation is universal, but for particular situations it might be
advantageous to use a different coordinate system, such as polar coordinates
for a system with rotational symmetry. The question then is: How does the
corresponding equation look like in a different coordinate system?
There are different ways to find the answer. Here, we will focus on
directly deriving the transformed equation through an explicit calculation
involving the chain rule for a function of several variables.
!!! info Chain rule for a multi-variable function
Let $f$ be a function of $n$ variables: $f(y_1, y_2, \ldots, y_n)$,
as well as $g_i(x_1, x_2, \ldots, x_n)$ for $i=1,2,\ldots, n$. Then
$$\frac{\partial}{\partial x_i} = \sum_{j=1}^n
\frac{\partial f}{\partial y_j} \frac{\partial g_j}{\partial x_i}$$
We start by replacing the function $f(x, y)$ by a function in polar coordinates
$f(r, \varphi)$, and ask what is $\frac{\partial}{\partial x} f(r, \varphi)$. When
we look at this expression, we need to understand what it *means* to take the derivative
of a function of $r, \varphi$ in terms of $x$?
For this, we need to realize that there are relations between the coordinate systems.
In particular, $r = r(x,y)$ and $\varphi = \varphi(x, y)$ as defined in equations
\ref{rxy} and \ref{phixy}. In fact, we have been rather sloppy in our notation above,
as the functions $f(x,y)$ and $f(r, \varphi)$ do not mean that I substitute $x=r$
and $y=\varphi$! It is more precise to state that there are two diferent
functions $f_\text{cart}(x,y)$ and $f_\text{polar}(r, \varphi)$ that are equivalent,
in the sense that
$$f_\text{cart}(x, y) = f_\text{polar}(r(x,y), \varphi(x,y))$$
In physics, we usually never write this down explicitly, but we are aware that these
are two different functions from the fact that they use different coordinates.
With this information, we can now apply the chain rule:
$$ \frac{\partial}{\partial x} f(r, \varphi) =
\frac{\partial f}{\partial r} \frac{\partial r(x, y)}{\partial x} +
\frac{\partial f}{\partial \varphi} \frac{\partial \varphi(x,y)}{\partial x}
$$
and it is now a matter of (tedious) calculus to arrive at the right result.
This is the task of exercises 3 and 4, which finally compute the Laplacian
in polar coordinates.
!!! warning Inverse function theorem
In this calculation one might be tempted to use the inverse
function theorem to compute derivatives like
$\frac{\partial \varphi}{\partial x}$ from the much simpler
$\frac{\partial x}{\partial \varphi}$. Note though that here we
are dealing with functions depending on several variables, so the
*Jacobian* has to be used (see [Wikipedia](https://en.wikipedia.org/wiki/Inverse_function_theorem)). A direct calculation is in this particular case more easy.
Note that this procedure also carries over to other coordinate systems,
although the calculations can become quite tedious. In these cases,
it's usually best to look up the correct form.
# Cylindrical coordinates
Three dimensional systems may have axial symmetry. An example is an
electrically charged wire of which we would like to calculate the
electric field, or a current-carrying wire for which we would like to
calculate the magnetic field. For such problems the most convenient
coordinates are *cylindrical coordinates*. For convenience, we choose
the symmetry-axis as the $z$-axis. Note that this can be done as we can
choose the coordinate system ourselves - this is not imposed by the
problem.
Cylindrical coordinates are defined straightforwardly: we use polar
coordinates $r$ and $\varphi$ in the $xy$ plane, and the distance $z$
along the symmetry-axis as the third coordinate. If the axis system is
chosen in physical space, we have two coordinates which have the
dimension of a distance: $r$ and $z$. The other coordinate,
$\varphi$, is of course dimensionless.
What is the distance travelled along a path when we express this in
cylindrical coordinates? Let’s consider an example (Figure).
![image](figures/Coordinates_13_0.svg)
We want to find the length of the (small) red segment $d s$. By
inspecting the figure, we see that the horizontal (i.e. parallel to the
$xy$-plane) segment $d l$ is perpendicular to the vertical segment
$dz$. Using for $d l$ the length we obtained before for a line
segment in the $xy$ plane, expressed in polar coordinates, we
immediately find:
$$d s^2 = d l^2 + d z^2 = d r^2 + r^2 d \varphi^2 + d z^2.$$
The volume element is consequently given as
$$dV = r dr d\varphi dz.$$
# Spherical coordinates
For problems with spherical symmetry, we use *spherical coordinates*.
These work as follows. For a point $\bf r$ in 3D space, we can specify
the position of that point by specifying its (1) distance to the origin
and (2) the direction of the line connecting the origin to our point.
The specification of this direction can be identified with a point on a
sphere which is centered at the origin:
![image](figures/Coordinates_15_0.svg)
The position of a point on the sphere is specified using the two angles
$\theta$ and $\phi$ indicated in the figure.
!!! warning
Note that in mathematics, often the angles are labelled the other way
round: there, $\phi$ is used for the angle between a line running from
the origin o the point of interest and the $z$-axis, and $\theta$ for
the angle of the projection of that line with the $x$-axis. The
convention used here is custom in physics.
The relation between Cartesian and coordinates is defined by
$$x = r \cos \varphi \sin \vartheta$$
$$y = r \sin\varphi \sin \vartheta$$ $$z = r \cos\vartheta$$ The inverse
transformation is easy to find: $$r = \sqrt{x^2+y^2+z^2}$$
$$\theta = \arccos(z/\sqrt{x^2+y^2+z^2})$$
$$\phi = \begin{cases} \arctan(y/x) &{\rm for ~} x>0; \\
\pi + \arctan(y/x) & {\rm for ~} x<0 {\rm ~ and ~} y>0;\\
-\pi + \arctan(y/x) &{\rm ~ for ~} x<0 {\rm ~ and ~} y<0.
\end{cases}$$ These relations can be derived from the following figure:
![image](figures/Coordinates_17_0.svg)
The distance related to a change in the spherical coordinates is
calculated using Pythagoras’ theorem. The length $ds$ of a short segment
on the sphere with radius $r$ corresponding to changes in the polar
angles of $d\vartheta$ and $d\varphi$ is given as
$$dl^2 = r^2 \left(\sin^2 \vartheta d\varphi^2 + d\vartheta^2\right).$$
In order to verify this, it is important to realize that all points with
*the same* coordinate $\vartheta$ span a circle in a horizontal plane
with a radius $r\sin\vartheta$ as shown in the figure below.
From this we can also infer that, for a segment with a radial component
$dr$ in addition to the displacement on the sphere, the displacement is:
$$ds^2 = r^2 \left(\sin^2 \vartheta d\varphi^2 + d\vartheta^2\right) + dr^2.$$
The picture below shows the geometry behind the calculation of this
displacement.
![image](figures/Coordinates_19_0.svg)
From these arguments we can again also find the volume element, it is
here given as
$$dV = r^2 \sin\theta dr d\theta d\varphi.$$
### summary
We have discussed four different coordinate systems:
1. *Cartesian coordinates*: $${\bf r} = (x_1, \ldots, x_n).$$ Can be
used for any dimension $n$. Convenient for: infinite spaces, systems
with rectangular symmatry.
Distance between two points ${\bf r} = (x_1, \ldots, x_n)$ and
${\bf r}' = (x'_1, \ldots, x'_n)$:
$$\Delta s^2 = (x'_1 - x_1)^2 + (x'_2 - x_2)^2 + \ldots + (x'_n - x_n)^2.$$
2. *Polar coordinates*: $${\bf r} = (r, \phi).$$ Can be used in two
dimensions. Suitable for systems with circular symmetry or functions
given in terms of these coordinates.
Infinitesimal distance: $$ds^2 = dr^2 + r^2 d\phi^2.$$
Infinitesimal area: $$dA = r dr d\varphi.$$
3. *Cylindrical coordinates*: $${\bf r} = (r, \phi, z).$$ Can be
used in three dimensions. Suitable for systems with axial symmetry
or functions given in terms of these coordinates.
Infinitesimal distance: $$ds^2 = dr^2 + r^2 d\phi^2 + dz^2.$$
Infinitesimal volume:: $$dV = r dr d\varphi dz.$$
4. *Spherical coordinates*: $${\bf r} = (r, \theta, \phi).$$ Can be
used in three dimensions. Suitable for systems with spherical
symmetry or functions given in terms of these coordinates.
Infinitesimal distance:
$$ds^2 =r^2 (\sin^2 \theta d\phi^2 + d\theta^2) + dr^2 .$$
Infinitesimal volume:
$$dV = r^2 \sin(\theta) dr d\theta d\varphi.$$
Problems
========
1. [:grinning:]
1. Find the polar coordinates of the point with Cartesian
coordinates $${\bf r} = \sqrt{2} (1,1).$$
2. Find the cylindrical coordinates of the point with Cartesian
coordinates $${\bf r} = \frac{3}{2} (\sqrt{3}, 1, 1).$$
3. Find the spherical coordinates of the points
$${\bf r} = (3/2, \sqrt{3}/2, 1).$$
2. [:grinning:] *Geometry and different coordinate systems}*
What geometric objects do the following boundary conditions describe?
1. $r<1$ in cylindrical coordinates,
2. $\varphi=0$ in cylindrical coordinates,
3. $r=1$ in spherical coordinates,
4. $\theta = \pi/4$ in spherical coordinates,
5. $r=1$ and $\theta=\pi/4$ in spherical coordinates.
3. [:smirk:] From the transformation from polar to Cartesian
coordinates, show that
$$\frac{\partial}{\partial x} = \cos\varphi \frac{\partial}{\partial r} - \frac{\sin\varphi}{r} \frac{\partial}{\partial \varphi}$$
and
$$\frac{\partial}{\partial y} = \sin\varphi \frac{\partial}{\partial r} + \frac{\cos\varphi}{r} \frac{\partial}{\partial \varphi}.$$
(Use the chain rule for differentiation).
3. [:sweat:] Using the result of problem 2, show that the Laplace
operator acting on a function $\psi({\bf r})$ in polar coordinates
takes the form
$$\nabla^2 \psi({\bf r}) =\left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \psi({\bf r}) = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial \psi(r,\varphi)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi(r,\varphi)}{\partial \varphi^2}.$$
In a similar fashion it can be shown that for spherical coordinates,
the Laplace operator acting on a function $\psi({\bf r})$ becomes:
$$\nabla^2 \psi (r,\vartheta,\varphi) =
\frac{1}{r^2} \frac{\partial}{\partial r^2} \left( r^2 \frac{\partial \psi(r,\vartheta,\varphi)}{\partial r} \right) + \frac{1}{r^2\sin^2\vartheta} \frac{\partial^2 \psi(r,\vartheta, \varphi)}{\partial \varphi^2} + \frac{1}{r^2\sin\vartheta}
\frac{\partial}{\partial \vartheta}\left( \sin\vartheta \frac{\partial\psi(r,\vartheta, \varphi)}{\partial \vartheta}\right).$$
This is however even more tedious (you do not have to show this).
5. [:grinning:] *Integration and coordinates I*
Compute the area of the spherical cap defined by $r=r_0$ and $\theta <\theta_0$.
6. [:smirk:] *Integration and coordinates II*
In 2D we can define a shape by specifying a function $r(\varphi)$:
![image](figures/shape_polar.svg)
(Of course, here we need to have $r(0) = r(2\pi)$.)
Show that the area of this shape is given by
$$
\int_0^{2\pi} \frac{1}{2}\left[r(\varphi)\right]^2 d\varphi
$$
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Created with matplotlib (http://matplotlib.org/) -->
<svg height="362pt" version="1.1" viewBox="0 0 494 362" width="494pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>
<style type="text/css">
*{stroke-linecap:butt;stroke-linejoin:round;}
</style>
</defs>
<g id="figure_1">
<g id="patch_1">
<path d="
M0 362.878
L494.43 362.878
L494.43 0
L0 0
z
" style="fill:none;"/>
</g>
<g id="axes_1">
<g id="patch_2">
<path clip-path="url(#p4db4202fc0)" d="
M218.218 180.531
C213.231 175.649 207.551 171.823 201.435 169.226
C195.318 166.629 188.859 165.3 182.35 165.3" style="fill:none;stroke:#000000;"/>
</g>
<g id="patch_3">
<path clip-path="url(#p4db4202fc0)" d="
M142.924 261.947
C157.376 266.463 174.502 268.361 191.417 267.323
C208.332 266.284 224.031 262.371 235.869 256.241" style="fill:none;stroke:#000000;"/>
</g>
<g id="line2d_1">
<path clip-path="url(#p4db4202fc0)" d="
M182.35 230.4
L442.75 230.4" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
</g>
<g id="line2d_2">
<path clip-path="url(#p4db4202fc0)" d="
M182.35 230.4
L70.75 323.4" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
</g>
<g id="line2d_3">
<path clip-path="url(#p4db4202fc0)" d="
M182.35 230.4
L182.35 7.2" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
</g>
<g id="line2d_4">
<path clip-path="url(#p4db4202fc0)" d="
M182.35 230.4
L293.95 81.6" style="fill:none;stroke:#0000ff;stroke-linecap:square;stroke-width:2;"/>
</g>
<g id="line2d_5">
<path clip-path="url(#p4db4202fc0)" d="
M293.95 81.6
L293.95 286.2" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
</g>
<g id="line2d_6">
<path clip-path="url(#p4db4202fc0)" d="
M182.35 230.4
L293.95 286.2" style="fill:none;stroke:#0000ff;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
</g>
<g id="line2d_7">
<path clip-path="url(#p4db4202fc0)" d="
M115.39 286.2
L293.95 286.2" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
</g>
<g id="line2d_8">
<path clip-path="url(#p4db4202fc0)" d="
M293.95 286.2
L360.91 230.4" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
</g>
<g id="line2d_9">
<path clip-path="url(#p4db4202fc0)" d="
M182.35 25.8
L293.95 81.6" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
</g>
<g id="text_1">
<!-- r -->
<defs>
<path d="
M49.0312 39.7969
Q46.7344 40.875 44.4531 41.375
Q42.1875 41.8906 39.8906 41.8906
Q33.1562 41.8906 29.5156 37.5625
Q25.875 33.25 25.875 25.2031
L25.875 0
L8.40625 0
L8.40625 54.6875
L25.875 54.6875
L25.875 45.7031
Q29.25 51.0781 33.6094 53.5312
Q37.9844 56 44.0938 56
Q44.9688 56 45.9844 55.9219
Q47.0156 55.8594 48.9688 55.6094
z
" id="DejaVuSans-Bold-72"/>
</defs>
<g transform="translate(305.11 76.02)scale(0.2 -0.2)">
<use xlink:href="#DejaVuSans-Bold-72"/>
</g>
</g>
<g id="text_2">
<!-- $r$ -->
<defs>
<path d="
M7.71875 1.70312
Q7.71875 2.29688 7.8125 2.59375
L15.2812 32.4219
Q16.0156 35.2031 16.0156 37.3125
Q16.0156 41.6094 13.0938 41.6094
Q9.96875 41.6094 8.45312 37.8594
Q6.9375 34.125 5.51562 28.4219
Q5.51562 28.125 5.21875 27.9531
Q4.9375 27.7812 4.6875 27.7812
L3.51562 27.7812
Q3.17188 27.7812 2.92188 28.1406
Q2.6875 28.5156 2.6875 28.8125
Q3.76562 33.1562 4.76562 36.1719
Q5.76562 39.2031 7.89062 41.6875
Q10.0156 44.1875 13.1875 44.1875
Q16.6562 44.1875 19.2656 42.1875
Q21.875 40.1875 22.5156 36.9219
Q25.0469 40.2344 28.2969 42.2031
Q31.5469 44.1875 35.4062 44.1875
Q38.5781 44.1875 40.9844 42.3281
Q43.4062 40.4844 43.4062 37.3125
Q43.4062 34.7656 41.8125 32.875
Q40.2344 31 37.5938 31
Q35.9844 31 34.8906 32
Q33.7969 33.0156 33.7969 34.625
Q33.7969 36.8125 35.4062 38.5469
Q37.0156 40.2812 39.1094 40.2812
Q37.5 41.6094 35.2031 41.6094
Q30.9062 41.6094 27.7344 38.5469
Q24.5625 35.5 22.0156 30.8125
L14.8906 2.20312
Q14.5469 0.828125 13.3438 -0.140625
Q12.1562 -1.125 10.6875 -1.125
Q9.46875 -1.125 8.59375 -0.34375
Q7.71875 0.4375 7.71875 1.70312" id="Cmmi10-72"/>
</defs>
<g transform="translate(238.15 137.4)scale(0.2 -0.2)">
<use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-72"/>
</g>
</g>
<g id="text_3">
<!-- $\vartheta$ -->
<defs>
<path d="
M10.5 10.2969
Q10.5 13.5781 11.5312 17.2812
L15.2812 32.4219
Q16.0156 35.2031 16.0156 37.3125
Q16.0156 41.6094 13.0938 41.6094
Q9.96875 41.6094 8.45312 37.8594
Q6.9375 34.125 5.51562 28.4219
Q5.51562 28.125 5.21875 27.9531
Q4.9375 27.7812 4.6875 27.7812
L3.51562 27.7812
Q3.17188 27.7812 2.92188 28.1406
Q2.6875 28.5156 2.6875 28.8125
Q3.76562 33.1562 4.76562 36.1719
Q5.76562 39.2031 7.89062 41.6875
Q10.0156 44.1875 13.1875 44.1875
Q17.2812 44.1875 19.9844 41.5938
Q22.7031 39.0156 22.7031 35.0156
Q22.7031 33.5938 22.4062 32.1719
L18.6094 17.0938
Q17.4375 12.5938 17.2812 9.1875
Q17.2812 1.51562 24.7031 1.51562
Q29.2031 1.51562 33.0312 7.6875
Q36.8594 13.875 39.2812 21.1719
Q41.7031 28.4688 43.4062 35.2969
Q27 40.7188 27 52.0938
Q27 56.1562 28.9688 60.4531
Q30.9531 64.75 34.4219 67.625
Q37.8906 70.5156 42 70.5156
Q45.4062 70.5156 47.6719 68.5
Q49.9531 66.5 51.1719 63.4219
Q52.3906 60.3594 52.8594 57.0781
Q53.3281 53.8125 53.3281 50.4844
Q53.3281 44.2812 51.4219 35.7969
Q52.3438 35.5938 53.4219 35.3906
Q54.5 35.2031 55.3438 34.8594
Q56.2031 34.5156 56.2031 33.8906
Q55.9531 32.3281 54.9844 32.3281
Q54.2969 32.4688 53.2188 32.6875
Q52.1562 32.9062 50.6875 33.2031
Q48.9688 26.5625 45.2031 18.625
Q41.4531 10.6875 36.0625 4.78125
Q30.6719 -1.125 24.6094 -1.125
Q18.2656 -1.125 14.375 1.53125
Q10.5 4.20312 10.5 10.2969
M44 37.7969
Q46.9219 49.2656 46.9219 56.2969
Q46.9219 67.9219 41.7969 67.9219
Q38.4844 67.9219 35.7656 65.375
Q33.0625 62.8438 31.4688 59.1562
Q29.8906 55.4688 29.8906 52.2969
Q29.8906 42.9688 44 37.7969" id="Cmmi10-23"/>
</defs>
<g transform="translate(200.95 161.58)scale(0.2 -0.2)">
<use transform="translate(0.0 0.484375)" xlink:href="#Cmmi10-23"/>
</g>
</g>
<g id="text_4">
<!-- $\varphi$ -->
<defs>
<path d="
M16.3125 -19
Q16.3125 -18.6094 16.5 -17.8281
L22.125 -0.203125
Q14.6562 1.65625 9.8125 6.6875
Q4.98438 11.7188 4.98438 19
Q4.98438 22.6562 6.34375 27.25
Q7.71875 31.8438 9.85938 35.9688
Q12.0156 40.0938 14.5 42.8281
Q15.0938 43.1094 15.1875 43.1094
L16.4062 43.1094
Q16.7031 43.1094 16.9375 42.8125
Q17.1875 42.5312 17.1875 42.1875
Q17.1875 41.7969 17 41.6094
Q15.3281 39.7969 13.7344 37.1875
Q12.1562 34.5781 10.9062 31.6875
Q9.67188 28.8125 8.84375 25.6406
Q8.01562 22.4688 8.01562 20.125
Q8.01562 14.2031 12.7188 10.5625
Q17.4375 6.9375 23.875 5.71875
L26.7031 14.7031
Q28.5625 20.5156 30.3906 25.0781
Q32.2344 29.6406 34.9844 34
Q37.75 38.375 41.6562 41.2812
Q45.5625 44.1875 50.3906 44.1875
Q54.2031 44.1875 56.7656 42.2812
Q59.3281 40.375 60.5625 37.2031
Q61.8125 34.0312 61.8125 30.4219
Q61.8125 24.4688 59.1719 18.7812
Q56.5469 13.0938 51.9531 8.5625
Q47.3594 4.04688 41.5938 1.45312
Q35.8438 -1.125 29.9844 -1.125
Q29.2031 -1.07812 28.2969 -1.03125
Q27.3906 -0.984375 26.8125 -0.984375
L23.4844 -18.4062
Q23.1875 -19.875 21.9844 -20.8281
Q20.7969 -21.7812 19.2812 -21.7812
Q18.0625 -21.7812 17.1875 -21.0156
Q16.3125 -20.2656 16.3125 -19
M27.875 5.17188
Q29 5.07812 31.1094 5.07812
Q37.3125 5.07812 43.7188 8.125
Q50.1406 11.1875 54.3594 16.5
Q58.5938 21.8281 58.5938 28.0781
Q58.5938 30.9062 57.4375 33.1562
Q56.2969 35.4062 54.2188 36.6875
Q52.1562 37.9844 49.4219 37.9844
Q41.6562 37.9844 36.4219 30.4688
Q31.2031 22.9531 29.5938 14.3125
z
" id="Cmmi10-27"/>
</defs>
<g transform="translate(204.67 276.9)scale(0.2 -0.2)">
<use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-27"/>
</g>
</g>
<g id="text_5">
<!-- $y$ -->
<defs>
<path d="
M8.40625 -14.3125
Q10.5 -17.9219 15.7188 -17.9219
Q20.4531 -17.9219 23.9219 -14.5938
Q27.3906 -11.2812 29.5156 -6.5625
Q31.6406 -1.85938 32.8125 3.07812
Q28.375 -1.125 23.1875 -1.125
Q19.2344 -1.125 16.4531 0.234375
Q13.6719 1.60938 12.125 4.3125
Q10.5938 7.03125 10.5938 10.8906
Q10.5938 14.1562 11.4688 17.5938
Q12.3594 21.0469 13.9375 25.2656
Q15.5312 29.5 16.7031 32.625
Q18.0156 36.2812 18.0156 38.625
Q18.0156 41.6094 15.8281 41.6094
Q11.8594 41.6094 9.29688 37.5312
Q6.73438 33.4531 5.51562 28.4219
Q5.32812 27.7812 4.6875 27.7812
L3.51562 27.7812
Q2.6875 27.7812 2.6875 28.7188
L2.6875 29
Q4.29688 34.9688 7.60938 39.5781
Q10.9375 44.1875 16.0156 44.1875
Q19.5781 44.1875 22.0469 41.8438
Q24.5156 39.5 24.5156 35.8906
Q24.5156 34.0312 23.6875 31.9844
Q23.25 30.7656 21.6875 26.6562
Q20.125 22.5625 19.2812 19.875
Q18.4531 17.1875 17.9219 14.5938
Q17.3906 12.0156 17.3906 9.42188
Q17.3906 6.10938 18.7969 3.8125
Q20.2188 1.51562 23.2969 1.51562
Q29.5 1.51562 34.4219 9.07812
L42 39.8906
Q42.3281 41.2188 43.5469 42.1562
Q44.7812 43.1094 46.1875 43.1094
Q47.4062 43.1094 48.3125 42.3281
Q49.2188 41.5469 49.2188 40.2812
Q49.2188 39.7031 49.125 39.5
L39.2031 -0.296875
Q37.8906 -5.42188 34.375 -10.1094
Q30.8594 -14.7969 25.9062 -17.6562
Q20.9531 -20.5156 15.5781 -20.5156
Q12.9844 -20.5156 10.4375 -19.5
Q7.90625 -18.5 6.34375 -16.5
Q4.78125 -14.5 4.78125 -11.8125
Q4.78125 -9.07812 6.39062 -7.07812
Q8.01562 -5.07812 10.6875 -5.07812
Q12.3125 -5.07812 13.4062 -6.07812
Q14.5 -7.07812 14.5 -8.6875
Q14.5 -10.9844 12.7812 -12.6875
Q11.0781 -14.4062 8.79688 -14.4062
Q8.6875 -14.3594 8.59375 -14.3281
Q8.5 -14.3125 8.40625 -14.3125" id="Cmmi10-79"/>
</defs>
<g transform="translate(331.15 222.96)scale(0.2 -0.2)">
<use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-79"/>
</g>
</g>
<g id="text_6">
<!-- $x$ -->
<defs>
<path d="
M7.8125 2.875
Q9.57812 1.51562 12.7969 1.51562
Q15.9219 1.51562 18.3125 4.51562
Q20.7031 7.51562 21.5781 11.0781
L26.125 28.8125
Q27.2031 33.6406 27.2031 35.4062
Q27.2031 37.8906 25.8125 39.75
Q24.4219 41.6094 21.9219 41.6094
Q18.75 41.6094 15.9688 39.625
Q13.1875 37.6406 11.2812 34.5938
Q9.375 31.5469 8.59375 28.4219
Q8.40625 27.7812 7.8125 27.7812
L6.59375 27.7812
Q5.8125 27.7812 5.8125 28.7188
L5.8125 29
Q6.78125 32.7188 9.125 36.25
Q11.4688 39.7969 14.8594 41.9844
Q18.2656 44.1875 22.125 44.1875
Q25.7812 44.1875 28.7344 42.2344
Q31.6875 40.2812 32.9062 36.9219
Q34.625 39.9844 37.2812 42.0781
Q39.9375 44.1875 43.1094 44.1875
Q45.2656 44.1875 47.5 43.4219
Q49.75 42.6719 51.1719 41.1094
Q52.5938 39.5469 52.5938 37.2031
Q52.5938 34.6719 50.9531 32.8281
Q49.3125 31 46.7812 31
Q45.1719 31 44.0938 32.0312
Q43.0156 33.0625 43.0156 34.625
Q43.0156 36.7188 44.4531 38.2969
Q45.9062 39.8906 47.9062 40.1875
Q46.0938 41.6094 42.9219 41.6094
Q39.7031 41.6094 37.3281 38.625
Q34.9688 35.6406 33.9844 31.9844
L29.5938 14.3125
Q28.5156 10.2969 28.5156 7.71875
Q28.5156 5.17188 29.9531 3.34375
Q31.3906 1.51562 33.7969 1.51562
Q38.4844 1.51562 42.1562 5.64062
Q45.8438 9.76562 47.0156 14.7031
Q47.2188 15.2812 47.7969 15.2812
L49.0312 15.2812
Q49.4219 15.2812 49.6562 15.0156
Q49.9062 14.75 49.9062 14.4062
Q49.9062 14.3125 49.8125 14.1094
Q48.3906 8.15625 43.8438 3.51562
Q39.3125 -1.125 33.5938 -1.125
Q29.9375 -1.125 26.9844 0.84375
Q24.0312 2.82812 22.7969 6.20312
Q21.2344 3.26562 18.4688 1.0625
Q15.7188 -1.125 12.5938 -1.125
Q10.4531 -1.125 8.17188 -0.359375
Q5.90625 0.390625 4.48438 1.95312
Q3.07812 3.51562 3.07812 5.90625
Q3.07812 8.25 4.70312 10.1719
Q6.34375 12.1094 8.79688 12.1094
Q10.4531 12.1094 11.5781 11.1094
Q12.7031 10.1094 12.7031 8.5
Q12.7031 6.39062 11.2969 4.82812
Q9.90625 3.26562 7.8125 2.875" id="Cmmi10-78"/>
</defs>
<g transform="translate(115.39 267.6)scale(0.2 -0.2)">
<use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-78"/>
</g>
</g>
<g id="text_7">
<!-- $z$ -->
<defs>
<path d="
M4.89062 -1.125
Q4.10938 -1.125 4.10938 -0.203125
Q4.10938 0.296875 4.29688 0.484375
Q6.98438 5.125 10.7656 9.34375
Q14.5469 13.5781 19.3594 17.8906
Q24.1719 22.2188 29.0312 26.5625
Q33.8906 30.9062 36.9219 34.2812
L36.5312 34.2812
Q34.3281 34.2812 30.0781 35.6875
Q25.8281 37.1094 23.3906 37.1094
Q20.75 37.1094 18.25 35.9531
Q15.7656 34.8125 15.0938 32.4219
Q14.9375 31.6875 14.3125 31.6875
L13.0938 31.6875
Q12.3125 31.6875 12.3125 32.7188
L12.3125 33.0156
Q13.0938 35.9375 14.875 38.4688
Q16.6562 41.0156 19.2656 42.5938
Q21.875 44.1875 24.7031 44.1875
Q26.7031 44.1875 28.0156 43.2812
Q29.3438 42.3906 31.0938 40.4844
Q32.8594 38.5781 33.9531 37.75
Q35.0625 36.9219 36.7188 36.9219
Q38.9219 36.9219 40.6562 38.9219
Q42.3906 40.9219 44.0938 43.8906
Q44.3906 44.1875 44.8281 44.1875
L46 44.1875
Q46.3438 44.1875 46.5625 43.9375
Q46.7812 43.7031 46.7812 43.3125
Q46.7812 42.9688 46.5781 42.6719
Q43.8906 38.0312 40.2969 34
Q36.7188 29.9844 30.9219 24.7812
Q25.1406 19.5781 21.1562 15.9844
Q17.1875 12.4062 13.7188 8.59375
Q14.5 8.79688 15.8281 8.79688
Q18.2656 8.79688 22.4844 7.39062
Q26.7031 6 29 6
Q31.5 6 34.0312 7.07812
Q36.5781 8.15625 38.4219 10.1094
Q40.2812 12.0625 40.9219 14.5938
Q41.1562 15.2812 41.7031 15.2812
L42.9219 15.2812
Q43.3125 15.2812 43.5469 14.9688
Q43.7969 14.6562 43.7969 14.3125
Q43.7969 14.2031 43.7031 14.0156
Q42.7812 10.2031 40.4844 6.76562
Q38.1875 3.32812 34.8438 1.09375
Q31.5 -1.125 27.6875 -1.125
Q25.7812 -1.125 24.4531 -0.234375
Q23.1406 0.640625 21.3594 2.5625
Q19.5781 4.5 18.4531 5.34375
Q17.3281 6.20312 15.7188 6.20312
Q10.75 6.20312 6.78125 -0.78125
Q6.45312 -1.125 6.10938 -1.125
z
" id="Cmmi10-7a"/>
</defs>
<g transform="translate(301.39 196.92)scale(0.2 -0.2)">
<use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-7a"/>
</g>
</g>
<g id="text_8">
<!-- $r\sin\vartheta$ -->
<defs>
<path d="
M2.98438 0
L2.98438 3.51562
Q6.39062 3.51562 8.59375 4.04688
Q10.7969 4.59375 10.7969 6.6875
L10.7969 33.9844
Q10.7969 36.6719 9.98438 37.8594
Q9.1875 39.0625 7.67188 39.3281
Q6.15625 39.5938 2.98438 39.5938
L2.98438 43.1094
L17.4844 44.1875
L17.4844 34.4219
Q19.4844 38.7188 23.4062 41.4531
Q27.3438 44.1875 31.9844 44.1875
Q38.9219 44.1875 42.4062 40.8594
Q45.9062 37.5469 45.9062 30.7188
L45.9062 6.6875
Q45.9062 4.59375 48.0938 4.04688
Q50.2969 3.51562 53.7188 3.51562
L53.7188 0
L30.8125 0
L30.8125 3.51562
Q34.2344 3.51562 36.4219 4.04688
Q38.625 4.59375 38.625 6.6875
L38.625 30.4219
Q38.625 35.2969 37.2031 38.4531
Q35.7969 41.6094 31.3906 41.6094
Q25.5938 41.6094 21.8438 36.9688
Q18.1094 32.3281 18.1094 26.4219
L18.1094 6.6875
Q18.1094 4.59375 20.3125 4.04688
Q22.5156 3.51562 25.875 3.51562
L25.875 0
z
" id="Cmr10-6e"/>
<path d="
M3.32812 -0.296875
L3.32812 16.0156
Q3.32812 16.7969 4.20312 16.7969
L5.42188 16.7969
Q6 16.7969 6.20312 16.0156
Q8.98438 1.51562 19.6719 1.51562
Q24.4219 1.51562 27.6094 3.65625
Q30.8125 5.8125 30.8125 10.2969
Q30.8125 13.5312 28.3125 15.7969
Q25.8281 18.0625 22.4062 18.8906
L15.7188 20.2188
Q12.3594 20.9531 9.59375 22.4531
Q6.84375 23.9688 5.07812 26.4844
Q3.32812 29 3.32812 32.3281
Q3.32812 36.7188 5.64062 39.5156
Q7.95312 42.3281 11.6562 43.5781
Q15.375 44.8281 19.6719 44.8281
Q24.8125 44.8281 28.6094 42.0938
L31.5 44.5781
Q31.5 44.8281 31.9844 44.8281
L32.7188 44.8281
Q33.0156 44.8281 33.25 44.5469
Q33.5 44.2812 33.5 44
L33.5 30.9062
Q33.5 29.9844 32.7188 29.9844
L31.5 29.9844
Q30.6094 29.9844 30.6094 30.9062
Q30.6094 36.1406 27.7031 39.3125
Q24.8125 42.4844 19.5781 42.4844
Q15.0938 42.4844 11.7969 40.8125
Q8.5 39.1562 8.5 35.1094
Q8.5 32.3281 10.8594 30.5469
Q13.2344 28.7656 16.4062 27.9844
L23.1875 26.7031
Q26.6094 25.9219 29.5625 24.0625
Q32.5156 22.2188 34.25 19.375
Q35.9844 16.5469 35.9844 12.9844
Q35.9844 9.375 34.7344 6.70312
Q33.5 4.04688 31.2656 2.28125
Q29.0469 0.53125 26.0156 -0.296875
Q23 -1.125 19.6719 -1.125
Q13.4219 -1.125 8.98438 3.07812
L5.32812 -0.875
Q5.32812 -1.125 4.78125 -1.125
L4.20312 -1.125
Q3.32812 -1.125 3.32812 -0.296875" id="Cmr10-73"/>
<path d="
M3.07812 0
L3.07812 3.51562
Q6.5 3.51562 8.6875 4.04688
Q10.8906 4.59375 10.8906 6.6875
L10.8906 33.9844
Q10.8906 37.8438 9.39062 38.7188
Q7.90625 39.5938 3.51562 39.5938
L3.51562 43.1094
L17.9219 44.1875
L17.9219 6.6875
Q17.9219 4.59375 19.8281 4.04688
Q21.7344 3.51562 24.9062 3.51562
L24.9062 0
z
M7.32812 61.375
Q7.32812 63.5781 8.98438 65.2344
Q10.6406 66.8906 12.7969 66.8906
Q14.2031 66.8906 15.5156 66.1562
Q16.8438 65.4375 17.5781 64.1094
Q18.3125 62.7969 18.3125 61.375
Q18.3125 59.2344 16.6406 57.5625
Q14.9844 55.9062 12.7969 55.9062
Q10.6406 55.9062 8.98438 57.5625
Q7.32812 59.2344 7.32812 61.375" id="Cmr10-69"/>
</defs>
<g transform="translate(234.43 44.4)scale(0.2 -0.2)">
<use transform="translate(0.0 0.484375)" xlink:href="#Cmmi10-72"/>
<use transform="translate(45.1171875 0.484375)" xlink:href="#Cmr10-73"/>
<use transform="translate(84.521484375 0.484375)" xlink:href="#Cmr10-69"/>
<use transform="translate(112.20703125 0.484375)" xlink:href="#Cmr10-6e"/>
<use transform="translate(167.724609375 0.484375)" xlink:href="#Cmmi10-23"/>
</g>
</g>
</g>
</g>
<defs>
<clipPath id="p4db4202fc0">
<rect height="334.8" width="446.4" x="33.55" y="7.2"/>
</clipPath>
</defs>
</svg>
This diff is collapsed.
<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Created with matplotlib (http://matplotlib.org/) -->
<svg height="256pt" version="1.1" viewBox="0 0 374 256" width="374pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>
<style type="text/css">
*{stroke-linecap:butt;stroke-linejoin:round;}
</style>
</defs>
<g id="figure_1">
<g id="patch_1">
<path d="
M0 256.117
L374.953 256.117
L374.953 0
L0 0
z
" style="fill:none;"/>
</g>
<g id="axes_1">
<g id="patch_2">
<path d="
M25.8828 235.239
L360.683 235.239
L360.683 12.0391
L25.8828 12.0391
z
" style="fill:none;"/>
</g>
<g id="matplotlib.axis_1">
<g id="xtick_1">
<g id="line2d_1">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 235.239
L25.8828 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_2">
<defs>
<path d="
M0 0
L0 -4" id="m93b0483c22" style="stroke:#000000;stroke-width:0.5;"/>
</defs>
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_3">
<defs>
<path d="
M0 0
L0 4" id="m741efc42ff" style="stroke:#000000;stroke-width:0.5;"/>
</defs>
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_1">
<!-- 0.0 -->
<defs>
<path d="
M31.7812 66.4062
Q24.1719 66.4062 20.3281 58.9062
Q16.5 51.4219 16.5 36.375
Q16.5 21.3906 20.3281 13.8906
Q24.1719 6.39062 31.7812 6.39062
Q39.4531 6.39062 43.2812 13.8906
Q47.125 21.3906 47.125 36.375
Q47.125 51.4219 43.2812 58.9062
Q39.4531 66.4062 31.7812 66.4062
M31.7812 74.2188
Q44.0469 74.2188 50.5156 64.5156
Q56.9844 54.8281 56.9844 36.375
Q56.9844 17.9688 50.5156 8.26562
Q44.0469 -1.42188 31.7812 -1.42188
Q19.5312 -1.42188 13.0625 8.26562
Q6.59375 17.9688 6.59375 36.375
Q6.59375 54.8281 13.0625 64.5156
Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
<path d="
M10.6875 12.4062
L21 12.4062
L21 0
L10.6875 0
z
" id="DejaVuSans-2e"/>
</defs>
<g transform="translate(18.59296875 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-30"/>
</g>
</g>
</g>
<g id="xtick_2">
<g id="line2d_4">
<path clip-path="url(#p2650e7d7b6)" d="
M92.8428 235.239
L92.8428 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_5">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="92.8428125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_6">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="92.8428125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_2">
<!-- 0.2 -->
<defs>
<path d="
M19.1875 8.29688
L53.6094 8.29688
L53.6094 0
L7.32812 0
L7.32812 8.29688
Q12.9375 14.1094 22.625 23.8906
Q32.3281 33.6875 34.8125 36.5312
Q39.5469 41.8438 41.4219 45.5312
Q43.3125 49.2188 43.3125 52.7812
Q43.3125 58.5938 39.2344 62.25
Q35.1562 65.9219 28.6094 65.9219
Q23.9688 65.9219 18.8125 64.3125
Q13.6719 62.7031 7.8125 59.4219
L7.8125 69.3906
Q13.7656 71.7812 18.9375 73
Q24.125 74.2188 28.4219 74.2188
Q39.75 74.2188 46.4844 68.5469
Q53.2188 62.8906 53.2188 53.4219
Q53.2188 48.9219 51.5312 44.8906
Q49.8594 40.875 45.4062 35.4062
Q44.1875 33.9844 37.6406 27.2188
Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
</defs>
<g transform="translate(85.72171875 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-32"/>
</g>
</g>
</g>
<g id="xtick_3">
<g id="line2d_7">
<path clip-path="url(#p2650e7d7b6)" d="
M159.803 235.239
L159.803 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_8">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="159.8028125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_9">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="159.8028125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_3">
<!-- 0.4 -->
<defs>
<path d="
M37.7969 64.3125
L12.8906 25.3906
L37.7969 25.3906
z
M35.2031 72.9062
L47.6094 72.9062
L47.6094 25.3906
L58.0156 25.3906
L58.0156 17.1875
L47.6094 17.1875
L47.6094 0
L37.7969 0
L37.7969 17.1875
L4.89062 17.1875
L4.89062 26.7031
z
" id="DejaVuSans-34"/>
</defs>
<g transform="translate(152.46140625 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-34"/>
</g>
</g>
</g>
<g id="xtick_4">
<g id="line2d_10">
<path clip-path="url(#p2650e7d7b6)" d="
M226.763 235.239
L226.763 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_11">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="226.7628125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_12">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="226.7628125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_4">
<!-- 0.6 -->
<defs>
<path d="
M33.0156 40.375
Q26.375 40.375 22.4844 35.8281
Q18.6094 31.2969 18.6094 23.3906
Q18.6094 15.5312 22.4844 10.9531
Q26.375 6.39062 33.0156 6.39062
Q39.6562 6.39062 43.5312 10.9531
Q47.4062 15.5312 47.4062 23.3906
Q47.4062 31.2969 43.5312 35.8281
Q39.6562 40.375 33.0156 40.375
M52.5938 71.2969
L52.5938 62.3125
Q48.875 64.0625 45.0938 64.9844
Q41.3125 65.9219 37.5938 65.9219
Q27.8281 65.9219 22.6719 59.3281
Q17.5312 52.7344 16.7969 39.4062
Q19.6719 43.6562 24.0156 45.9219
Q28.375 48.1875 33.5938 48.1875
Q44.5781 48.1875 50.9531 41.5156
Q57.3281 34.8594 57.3281 23.3906
Q57.3281 12.1562 50.6875 5.35938
Q44.0469 -1.42188 33.0156 -1.42188
Q20.3594 -1.42188 13.6719 8.26562
Q6.98438 17.9688 6.98438 36.375
Q6.98438 53.6562 15.1875 63.9375
Q23.3906 74.2188 37.2031 74.2188
Q40.9219 74.2188 44.7031 73.4844
Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
</defs>
<g transform="translate(219.45578125 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-36"/>
</g>
</g>
</g>
<g id="xtick_5">
<g id="line2d_13">
<path clip-path="url(#p2650e7d7b6)" d="
M293.723 235.239
L293.723 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_14">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="293.7228125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_15">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="293.7228125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_5">
<!-- 0.8 -->
<defs>
<path d="
M31.7812 34.625
Q24.75 34.625 20.7188 30.8594
Q16.7031 27.0938 16.7031 20.5156
Q16.7031 13.9219 20.7188 10.1562
Q24.75 6.39062 31.7812 6.39062
Q38.8125 6.39062 42.8594 10.1719
Q46.9219 13.9688 46.9219 20.5156
Q46.9219 27.0938 42.8906 30.8594
Q38.875 34.625 31.7812 34.625
M21.9219 38.8125
Q15.5781 40.375 12.0312 44.7188
Q8.5 49.0781 8.5 55.3281
Q8.5 64.0625 14.7188 69.1406
Q20.9531 74.2188 31.7812 74.2188
Q42.6719 74.2188 48.875 69.1406
Q55.0781 64.0625 55.0781 55.3281
Q55.0781 49.0781 51.5312 44.7188
Q48 40.375 41.7031 38.8125
Q48.8281 37.1562 52.7969 32.3125
Q56.7812 27.4844 56.7812 20.5156
Q56.7812 9.90625 50.3125 4.23438
Q43.8438 -1.42188 31.7812 -1.42188
Q19.7344 -1.42188 13.25 4.23438
Q6.78125 9.90625 6.78125 20.5156
Q6.78125 27.4844 10.7812 32.3125
Q14.7969 37.1562 21.9219 38.8125
M18.3125 54.3906
Q18.3125 48.7344 21.8438 45.5625
Q25.3906 42.3906 31.7812 42.3906
Q38.1406 42.3906 41.7188 45.5625
Q45.3125 48.7344 45.3125 54.3906
Q45.3125 60.0625 41.7188 63.2344
Q38.1406 66.4062 31.7812 66.4062
Q25.3906 66.4062 21.8438 63.2344
Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
</defs>
<g transform="translate(286.443125 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-38"/>
</g>
</g>
</g>
<g id="xtick_6">
<g id="line2d_16">
<path clip-path="url(#p2650e7d7b6)" d="
M360.683 235.239
L360.683 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_17">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_18">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_6">
<!-- 1.0 -->
<defs>
<path d="
M12.4062 8.29688
L28.5156 8.29688
L28.5156 63.9219
L10.9844 60.4062
L10.9844 69.3906
L28.4219 72.9062
L38.2812 72.9062
L38.2812 8.29688
L54.3906 8.29688
L54.3906 0
L12.4062 0
z
" id="DejaVuSans-31"/>
</defs>
<g transform="translate(353.6125 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-30"/>
</g>
</g>
</g>
</g>
<g id="matplotlib.axis_2">
<g id="ytick_1">
<g id="line2d_19">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 235.239
L360.683 235.239" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_20">
<defs>
<path d="
M0 0
L4 0" id="m728421d6d4" style="stroke:#000000;stroke-width:0.5;"/>
</defs>
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="235.2390625"/>
</g>
</g>
<g id="line2d_21">
<defs>
<path d="
M0 0
L-4 0" id="mcb0005524f" style="stroke:#000000;stroke-width:0.5;"/>
</defs>
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="235.2390625"/>
</g>
</g>
<g id="text_7">
<!-- 0.0 -->
<g transform="translate(7.303125 237.9984375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-30"/>
</g>
</g>
</g>
<g id="ytick_2">
<g id="line2d_22">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 190.599
L360.683 190.599" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_23">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="190.5990625"/>
</g>
</g>
<g id="line2d_24">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="190.5990625"/>
</g>
</g>
<g id="text_8">
<!-- 0.2 -->
<g transform="translate(7.640625 193.3584375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-32"/>
</g>
</g>
</g>
<g id="ytick_3">
<g id="line2d_25">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 145.959
L360.683 145.959" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_26">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="145.9590625"/>
</g>
</g>
<g id="line2d_27">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="145.9590625"/>
</g>
</g>
<g id="text_9">
<!-- 0.4 -->
<g transform="translate(7.2 148.7184375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-34"/>
</g>
</g>
</g>
<g id="ytick_4">
<g id="line2d_28">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 101.319
L360.683 101.319" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_29">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="101.3190625"/>
</g>
</g>
<g id="line2d_30">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="101.3190625"/>
</g>
</g>
<g id="text_10">
<!-- 0.6 -->
<g transform="translate(7.26875 104.0784375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-36"/>
</g>
</g>
</g>
<g id="ytick_5">
<g id="line2d_31">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 56.6791
L360.683 56.6791" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_32">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="56.6790625"/>
</g>
</g>
<g id="line2d_33">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="56.6790625"/>
</g>
</g>
<g id="text_11">
<!-- 0.8 -->
<g transform="translate(7.3234375 59.4384375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-38"/>
</g>
</g>
</g>
<g id="ytick_6">
<g id="line2d_34">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 12.0391
L360.683 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_35">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="12.0390625"/>
</g>
</g>
<g id="line2d_36">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="12.0390625"/>
</g>
</g>
<g id="text_12">
<!-- 1.0 -->
<g transform="translate(7.7421875 14.7984375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-30"/>
</g>
</g>
</g>
</g>
<g id="patch_3">
<path d="
M25.8828 12.0391
L360.683 12.0391" style="fill:none;stroke:#000000;"/>
</g>
<g id="patch_4">
<path d="
M360.683 235.239
L360.683 12.0391" style="fill:none;stroke:#000000;"/>
</g>
<g id="patch_5">
<path d="
M25.8828 235.239
L360.683 235.239" style="fill:none;stroke:#000000;"/>
</g>
<g id="patch_6">
<path d="
M25.8828 235.239
L25.8828 12.0391" style="fill:none;stroke:#000000;"/>
</g>
</g>
</g>
<defs>
<clipPath id="p2650e7d7b6">
<rect height="223.2" width="334.8" x="25.8828125" y="12.0390625"/>
</clipPath>
</defs>
</svg>
<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Created with matplotlib (http://matplotlib.org/) -->
<svg height="256pt" version="1.1" viewBox="0 0 374 256" width="374pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>
<style type="text/css">
*{stroke-linecap:butt;stroke-linejoin:round;}
</style>
</defs>
<g id="figure_1">
<g id="patch_1">
<path d="
M0 256.117
L374.953 256.117
L374.953 0
L0 0
z
" style="fill:none;"/>
</g>
<g id="axes_1">
<g id="patch_2">
<path d="
M25.8828 235.239
L360.683 235.239
L360.683 12.0391
L25.8828 12.0391
z
" style="fill:none;"/>
</g>
<g id="patch_3">
<path clip-path="url(#p2650e7d7b6)" d="
M226.763 56.6791
L210.023 90.1591
L197.3 83.7979
L26.5524 235.574
L25.2132 234.904
L195.961 83.1283
L183.239 76.7671
z
" style="fill:#0000ff;stroke:#000000;"/>
</g>
<g id="matplotlib.axis_1">
<g id="xtick_1">
<g id="line2d_1">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 235.239
L25.8828 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_2">
<defs>
<path d="
M0 0
L0 -4" id="m93b0483c22" style="stroke:#000000;stroke-width:0.5;"/>
</defs>
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_3">
<defs>
<path d="
M0 0
L0 4" id="m741efc42ff" style="stroke:#000000;stroke-width:0.5;"/>
</defs>
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_1">
<!-- 0.0 -->
<defs>
<path d="
M31.7812 66.4062
Q24.1719 66.4062 20.3281 58.9062
Q16.5 51.4219 16.5 36.375
Q16.5 21.3906 20.3281 13.8906
Q24.1719 6.39062 31.7812 6.39062
Q39.4531 6.39062 43.2812 13.8906
Q47.125 21.3906 47.125 36.375
Q47.125 51.4219 43.2812 58.9062
Q39.4531 66.4062 31.7812 66.4062
M31.7812 74.2188
Q44.0469 74.2188 50.5156 64.5156
Q56.9844 54.8281 56.9844 36.375
Q56.9844 17.9688 50.5156 8.26562
Q44.0469 -1.42188 31.7812 -1.42188
Q19.5312 -1.42188 13.0625 8.26562
Q6.59375 17.9688 6.59375 36.375
Q6.59375 54.8281 13.0625 64.5156
Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
<path d="
M10.6875 12.4062
L21 12.4062
L21 0
L10.6875 0
z
" id="DejaVuSans-2e"/>
</defs>
<g transform="translate(18.59296875 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-30"/>
</g>
</g>
</g>
<g id="xtick_2">
<g id="line2d_4">
<path clip-path="url(#p2650e7d7b6)" d="
M92.8428 235.239
L92.8428 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_5">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="92.8428125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_6">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="92.8428125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_2">
<!-- 0.2 -->
<defs>
<path d="
M19.1875 8.29688
L53.6094 8.29688
L53.6094 0
L7.32812 0
L7.32812 8.29688
Q12.9375 14.1094 22.625 23.8906
Q32.3281 33.6875 34.8125 36.5312
Q39.5469 41.8438 41.4219 45.5312
Q43.3125 49.2188 43.3125 52.7812
Q43.3125 58.5938 39.2344 62.25
Q35.1562 65.9219 28.6094 65.9219
Q23.9688 65.9219 18.8125 64.3125
Q13.6719 62.7031 7.8125 59.4219
L7.8125 69.3906
Q13.7656 71.7812 18.9375 73
Q24.125 74.2188 28.4219 74.2188
Q39.75 74.2188 46.4844 68.5469
Q53.2188 62.8906 53.2188 53.4219
Q53.2188 48.9219 51.5312 44.8906
Q49.8594 40.875 45.4062 35.4062
Q44.1875 33.9844 37.6406 27.2188
Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
</defs>
<g transform="translate(85.72171875 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-32"/>
</g>
</g>
</g>
<g id="xtick_3">
<g id="line2d_7">
<path clip-path="url(#p2650e7d7b6)" d="
M159.803 235.239
L159.803 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_8">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="159.8028125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_9">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="159.8028125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_3">
<!-- 0.4 -->
<defs>
<path d="
M37.7969 64.3125
L12.8906 25.3906
L37.7969 25.3906
z
M35.2031 72.9062
L47.6094 72.9062
L47.6094 25.3906
L58.0156 25.3906
L58.0156 17.1875
L47.6094 17.1875
L47.6094 0
L37.7969 0
L37.7969 17.1875
L4.89062 17.1875
L4.89062 26.7031
z
" id="DejaVuSans-34"/>
</defs>
<g transform="translate(152.46140625 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-34"/>
</g>
</g>
</g>
<g id="xtick_4">
<g id="line2d_10">
<path clip-path="url(#p2650e7d7b6)" d="
M226.763 235.239
L226.763 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_11">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="226.7628125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_12">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="226.7628125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_4">
<!-- 0.6 -->
<defs>
<path d="
M33.0156 40.375
Q26.375 40.375 22.4844 35.8281
Q18.6094 31.2969 18.6094 23.3906
Q18.6094 15.5312 22.4844 10.9531
Q26.375 6.39062 33.0156 6.39062
Q39.6562 6.39062 43.5312 10.9531
Q47.4062 15.5312 47.4062 23.3906
Q47.4062 31.2969 43.5312 35.8281
Q39.6562 40.375 33.0156 40.375
M52.5938 71.2969
L52.5938 62.3125
Q48.875 64.0625 45.0938 64.9844
Q41.3125 65.9219 37.5938 65.9219
Q27.8281 65.9219 22.6719 59.3281
Q17.5312 52.7344 16.7969 39.4062
Q19.6719 43.6562 24.0156 45.9219
Q28.375 48.1875 33.5938 48.1875
Q44.5781 48.1875 50.9531 41.5156
Q57.3281 34.8594 57.3281 23.3906
Q57.3281 12.1562 50.6875 5.35938
Q44.0469 -1.42188 33.0156 -1.42188
Q20.3594 -1.42188 13.6719 8.26562
Q6.98438 17.9688 6.98438 36.375
Q6.98438 53.6562 15.1875 63.9375
Q23.3906 74.2188 37.2031 74.2188
Q40.9219 74.2188 44.7031 73.4844
Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
</defs>
<g transform="translate(219.45578125 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-36"/>
</g>
</g>
</g>
<g id="xtick_5">
<g id="line2d_13">
<path clip-path="url(#p2650e7d7b6)" d="
M293.723 235.239
L293.723 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_14">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="293.7228125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_15">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="293.7228125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_5">
<!-- 0.8 -->
<defs>
<path d="
M31.7812 34.625
Q24.75 34.625 20.7188 30.8594
Q16.7031 27.0938 16.7031 20.5156
Q16.7031 13.9219 20.7188 10.1562
Q24.75 6.39062 31.7812 6.39062
Q38.8125 6.39062 42.8594 10.1719
Q46.9219 13.9688 46.9219 20.5156
Q46.9219 27.0938 42.8906 30.8594
Q38.875 34.625 31.7812 34.625
M21.9219 38.8125
Q15.5781 40.375 12.0312 44.7188
Q8.5 49.0781 8.5 55.3281
Q8.5 64.0625 14.7188 69.1406
Q20.9531 74.2188 31.7812 74.2188
Q42.6719 74.2188 48.875 69.1406
Q55.0781 64.0625 55.0781 55.3281
Q55.0781 49.0781 51.5312 44.7188
Q48 40.375 41.7031 38.8125
Q48.8281 37.1562 52.7969 32.3125
Q56.7812 27.4844 56.7812 20.5156
Q56.7812 9.90625 50.3125 4.23438
Q43.8438 -1.42188 31.7812 -1.42188
Q19.7344 -1.42188 13.25 4.23438
Q6.78125 9.90625 6.78125 20.5156
Q6.78125 27.4844 10.7812 32.3125
Q14.7969 37.1562 21.9219 38.8125
M18.3125 54.3906
Q18.3125 48.7344 21.8438 45.5625
Q25.3906 42.3906 31.7812 42.3906
Q38.1406 42.3906 41.7188 45.5625
Q45.3125 48.7344 45.3125 54.3906
Q45.3125 60.0625 41.7188 63.2344
Q38.1406 66.4062 31.7812 66.4062
Q25.3906 66.4062 21.8438 63.2344
Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
</defs>
<g transform="translate(286.443125 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-38"/>
</g>
</g>
</g>
<g id="xtick_6">
<g id="line2d_16">
<path clip-path="url(#p2650e7d7b6)" d="
M360.683 235.239
L360.683 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_17">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#m93b0483c22" y="235.2390625"/>
</g>
</g>
<g id="line2d_18">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#m741efc42ff" y="12.0390625"/>
</g>
</g>
<g id="text_6">
<!-- 1.0 -->
<defs>
<path d="
M12.4062 8.29688
L28.5156 8.29688
L28.5156 63.9219
L10.9844 60.4062
L10.9844 69.3906
L28.4219 72.9062
L38.2812 72.9062
L38.2812 8.29688
L54.3906 8.29688
L54.3906 0
L12.4062 0
z
" id="DejaVuSans-31"/>
</defs>
<g transform="translate(353.6125 246.8375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-30"/>
</g>
</g>
</g>
</g>
<g id="matplotlib.axis_2">
<g id="ytick_1">
<g id="line2d_19">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 235.239
L360.683 235.239" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_20">
<defs>
<path d="
M0 0
L4 0" id="m728421d6d4" style="stroke:#000000;stroke-width:0.5;"/>
</defs>
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="235.2390625"/>
</g>
</g>
<g id="line2d_21">
<defs>
<path d="
M0 0
L-4 0" id="mcb0005524f" style="stroke:#000000;stroke-width:0.5;"/>
</defs>
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="235.2390625"/>
</g>
</g>
<g id="text_7">
<!-- 0.0 -->
<g transform="translate(7.303125 237.9984375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-30"/>
</g>
</g>
</g>
<g id="ytick_2">
<g id="line2d_22">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 190.599
L360.683 190.599" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_23">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="190.5990625"/>
</g>
</g>
<g id="line2d_24">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="190.5990625"/>
</g>
</g>
<g id="text_8">
<!-- 0.2 -->
<g transform="translate(7.640625 193.3584375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-32"/>
</g>
</g>
</g>
<g id="ytick_3">
<g id="line2d_25">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 145.959
L360.683 145.959" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_26">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="145.9590625"/>
</g>
</g>
<g id="line2d_27">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="145.9590625"/>
</g>
</g>
<g id="text_9">
<!-- 0.4 -->
<g transform="translate(7.2 148.7184375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-34"/>
</g>
</g>
</g>
<g id="ytick_4">
<g id="line2d_28">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 101.319
L360.683 101.319" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_29">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="101.3190625"/>
</g>
</g>
<g id="line2d_30">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="101.3190625"/>
</g>
</g>
<g id="text_10">
<!-- 0.6 -->
<g transform="translate(7.26875 104.0784375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-36"/>
</g>
</g>
</g>
<g id="ytick_5">
<g id="line2d_31">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 56.6791
L360.683 56.6791" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_32">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="56.6790625"/>
</g>
</g>
<g id="line2d_33">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="56.6790625"/>
</g>
</g>
<g id="text_11">
<!-- 0.8 -->
<g transform="translate(7.3234375 59.4384375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-30"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-38"/>
</g>
</g>
</g>
<g id="ytick_6">
<g id="line2d_34">
<path clip-path="url(#p2650e7d7b6)" d="
M25.8828 12.0391
L360.683 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
</g>
<g id="line2d_35">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="12.0390625"/>
</g>
</g>
<g id="line2d_36">
<g>
<use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="12.0390625"/>
</g>
</g>
<g id="text_12">
<!-- 1.0 -->
<g transform="translate(7.7421875 14.7984375)scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
<use x="95.41015625" xlink:href="#DejaVuSans-30"/>
</g>
</g>
</g>
</g>
<g id="patch_4">
<path d="
M25.8828 12.0391
L360.683 12.0391" style="fill:none;stroke:#000000;"/>
</g>
<g id="patch_5">
<path d="
M360.683 235.239
L360.683 12.0391" style="fill:none;stroke:#000000;"/>
</g>
<g id="patch_6">
<path d="
M25.8828 235.239
L360.683 235.239" style="fill:none;stroke:#000000;"/>
</g>
<g id="patch_7">
<path d="
M25.8828 235.239
L25.8828 12.0391" style="fill:none;stroke:#000000;"/>
</g>
</g>
</g>
<defs>
<clipPath id="p2650e7d7b6">
<rect height="223.2" width="334.8" x="25.8828125" y="12.0390625"/>
</clipPath>
</defs>
</svg>
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -4,8 +4,22 @@
After following this course you will be able to:
- Solve awesome problems
- Tell exciting stories
- reproduce elementary formulas from the topics covered.
- solve mathematical problems encountered in the follow-up courses of the minor.
- explain Hilbert spaces of (in)finite dimension.
Mathematics for quantum mechanics ives you a compact introduction and review
of the basic mathematical tools commonly used in quantum mechanics. Throughout
the course we have directly quantum mechanics applications in mind, but at the
core this is still a math course. For this reason, applying what you learned
to examples and exercises is **crucial**!
Each lecture note comes with an extensive set of exercises. Each exercise is labeled
according to difficulty:
- [:grinning:] easy
- [:smirk:] intermediate
- [:sweat:] difficult
In these notes our aim is to provide learning materials which are:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment