Skip to content
Snippets Groups Projects
Commit f6bd9cf1 authored by Michael Wimmer's avatar Michael Wimmer Committed by Christoph Groth
Browse files

restructure BlockResult

parent be750290
No related branches found
No related tags found
No related merge requests found
......@@ -342,12 +342,9 @@ class SparseSolver(object):
flhs = self._factorized(linsys.lhs)
data = self._solve_linear_sys(flhs, linsys.rhs, linsys.kept_vars)
result = BlockResult(data, lead_info)
result.in_leads = in_leads
result.out_leads = out_leads
return BlockResult(data, lead_info, out_leads, in_leads)
return result
def ldos(self, fsys, energy=0):
"""
......@@ -444,12 +441,11 @@ class WaveFunc(object):
return result.transpose()
class BlockResult(namedtuple('BlockResultTuple', ['data', 'lead_info'])):
class BlockResult(object):
"""
Solution of a transport problem, subblock of retarded Green's function.
This class is derived from ``namedtuple('BlockResultTuple', ['data',
'lead_info'])``. In addition to direct access to `data` and `lead_info`,
In addition to direct access to `data` and `lead_info`,
this class also supports a higher level interface via its methods.
Instance Variables
......@@ -460,28 +456,53 @@ class BlockResult(namedtuple('BlockResultTuple', ['data', 'lead_info'])):
lead_info : list of data
a list with output of `kwant.physics.modes` for each lead defined as a
builder, and self-energy for each lead defined as self-energy term.
out_leads : list of integers
in_leads : list of integers
indices of the leads where current is extracted (out) or injected (in).
Only those are listed for which BlockResult contains the calculated
result.
"""
def __init__(self, data, lead_info, out_leads, in_leads):
self.data = data
self.lead_info = lead_info
self.out_leads = out_leads
self.in_leads = in_leads
sizes = []
for i in self.lead_info:
if isinstance(i, tuple):
sizes.append(i[2])
else:
sizes.append(i.shape[0])
self._sizes = np.array(sizes)
self._in_offsets = np.zeros(len(self.in_leads) + 1, int)
self._in_offsets[1 :] = np.cumsum(self._sizes[self.in_leads])
self._out_offsets = np.zeros(len(self.out_leads) + 1, int)
self._out_offsets[1 :] = np.cumsum(self._sizes[self.out_leads])
def block_coords(self, lead_out, lead_in):
"""
Return slices corresponding to the block from lead_in to lead_out.
"""
return self.out_block_coords(lead_out), self.in_block_coords(lead_in)
def out_block_coords(self, lead_out):
"""Return a slice corresponding to the rows in the block corresponding
to lead_out
"""
lead_out = self.out_leads.index(lead_out)
lead_in = self.in_leads.index(lead_in)
if not hasattr(self, '_sizes'):
sizes = []
for i in self.lead_info:
if isinstance(i, tuple):
sizes.append(i[2])
else:
sizes.append(i.shape[0])
self._sizes = np.array(sizes)
self._in_offsets = np.zeros(len(self.in_leads) + 1, int)
self._in_offsets[1 :] = np.cumsum(self._sizes[self.in_leads])
self._out_offsets = np.zeros(len(self.out_leads) + 1, int)
self._out_offsets[1 :] = np.cumsum(self._sizes[self.out_leads])
return slice(self._out_offsets[lead_out],
self._out_offsets[lead_out + 1]), \
slice(self._in_offsets[lead_in], self._in_offsets[lead_in + 1])
self._out_offsets[lead_out + 1])
def in_block_coords(self, lead_in):
"""Return a slice corresponding to the columns in the block
corresponding to lead_in
"""
lead_in = self.in_leads.index(lead_in)
return slice(self._in_offsets[lead_in],
self._in_offsets[lead_in + 1])
def submatrix(self, lead_out, lead_in):
"""Return the matrix elements from lead_in to lead_out."""
......@@ -523,3 +544,8 @@ class BlockResult(namedtuple('BlockResultTuple', ['data', 'lead_info'])):
result += 2 * np.trace(np.dot(gamma, gf)).imag + N
return result
def __repr__(self):
return "BlockResult(data=%r, lead_info=%r, " \
"out_leads=%r, in_leads=%r)" % (self.data, self.lead_info,
self.out_leads, self.in_leads)
......@@ -31,16 +31,17 @@ def test_output(solve):
fsys = system.finalized()
result1 = solve(fsys)
s, modes1 = result1
s, modes1 = result1.data, result1.lead_info
assert s.shape == 2 * (sum(i[2] for i in modes1),)
s1 = result1.submatrix(1, 0)
s2, modes2 = solve(fsys, 0, [1], [0])
result2 = solve(fsys, 0, [1], [0])
s2, modes2 = result2.data, result2.lead_info
assert s2.shape == (modes2[1][2], modes2[0][2])
assert_almost_equal(s1, s2)
assert_almost_equal(np.dot(s.conjugate().transpose(), s),
np.identity(s.shape[0]))
assert_raises(ValueError, solve, fsys, 0, [])
modes = solve(fsys)[1]
modes = solve(fsys).lead_info
h = fsys.leads[0].slice_hamiltonian()
t = fsys.leads[0].inter_slice_hopping()
modes1 = kwant.physics.modes(h, t)
......@@ -68,7 +69,7 @@ def test_one_lead(solve):
system.attach_lead(lead)
fsys = system.finalized()
s = solve(fsys)[0]
s = solve(fsys).data
assert_almost_equal(np.dot(s.conjugate().transpose(), s),
np.identity(s.shape[0]))
......@@ -96,22 +97,22 @@ def test_smatrix_shape(solve):
lead0_val = 4
lead1_val = 4
s = solve(fsys, energy=1.0, out_leads=[1], in_leads=[0])[0]
s = solve(fsys, energy=1.0, out_leads=[1], in_leads=[0]).data
assert s.shape == (0, 0)
lead0_val = 2
lead1_val = 2
s = solve(fsys, energy=1.0, out_leads=[1], in_leads=[0])[0]
s = solve(fsys, energy=1.0, out_leads=[1], in_leads=[0]).data
assert s.shape == (1, 1)
lead0_val = 4
lead1_val = 2
s = solve(fsys, energy=1.0, out_leads=[1], in_leads=[0])[0]
s = solve(fsys, energy=1.0, out_leads=[1], in_leads=[0]).data
assert s.shape == (1, 0)
lead0_val = 2
lead1_val = 4
s = solve(fsys, energy=1.0, out_leads=[1], in_leads=[0])[0]
s = solve(fsys, energy=1.0, out_leads=[1], in_leads=[0]).data
assert s.shape == (0, 1)
......@@ -120,7 +121,7 @@ def test_smatrix_shape(solve):
def test_two_equal_leads(solve):
def check_fsys():
sol = solve(fsys)
s, leads = sol[:2]
s, leads = sol.data, sol.lead_info
assert_almost_equal(np.dot(s.conjugate().transpose(), s),
np.identity(s.shape[0]))
n_modes = leads[0][2]
......@@ -177,7 +178,8 @@ def test_graph_system(solve):
system.attach_lead(lead.reversed())
fsys = system.finalized()
s, leads = solve(fsys)[: 2]
result = solve(fsys)
s, leads = result.data, result.lead_info
assert_almost_equal(np.dot(s.conjugate().transpose(), s),
np.identity(s.shape[0]))
n_modes = leads[0][2]
......@@ -210,7 +212,8 @@ def test_singular_graph_system(solve):
system.attach_lead(lead.reversed())
fsys = system.finalized()
s, leads = solve(fsys)[: 2]
result = solve(fsys)
s, leads = result.data, result.lead_info
assert_almost_equal(np.dot(s.conjugate().transpose(), s),
np.identity(s.shape[0]))
n_modes = leads[0][2]
......@@ -223,7 +226,7 @@ def test_singular_graph_system(solve):
# This test features inside the onslice Hamiltonian a hopping matrix with more
# zero eigenvalues than the lead hopping matrix. The previous version of the
# zero eigenvalues than the lead hopping matrix. Older version of the
# sparse solver failed here.
def test_tricky_singular_hopping(solve):
system = kwant.Builder()
......@@ -249,7 +252,7 @@ def test_tricky_singular_hopping(solve):
system.leads.append(kwant.builder.BuilderLead(lead, interface))
fsys = system.finalized()
s = solve(fsys, -1.3)[0]
s = solve(fsys, -1.3).data
assert_almost_equal(np.dot(s.conjugate().transpose(), s),
np.identity(s.shape[0]))
......@@ -349,8 +352,8 @@ def test_very_singular_leads(solve):
sys.attach_lead(left_lead)
sys.attach_lead(right_lead)
fsys = sys.finalized()
result = solve(fsys)
assert [i[2] for i in result[1]] == [0, 2]
leads = solve(fsys).lead_info
assert [i[2] for i in leads] == [0, 2]
def test_ldos(ldos):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment