Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
kwant
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
kwant
kwant
Commits
8a19196e
Commit
8a19196e
authored
7 years ago
by
Joseph Weston
Browse files
Options
Downloads
Patches
Plain Diff
switch Xggev to fused types
parent
658c4230
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!149
Remove lapack wrappers
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
kwant/linalg/decomp_ev.py
+1
-14
1 addition, 14 deletions
kwant/linalg/decomp_ev.py
kwant/linalg/lapack.pyx
+111
-239
111 additions, 239 deletions
kwant/linalg/lapack.pyx
with
112 additions
and
253 deletions
kwant/linalg/decomp_ev.py
+
1
−
14
View file @
8a19196e
...
...
@@ -50,18 +50,5 @@ def gen_eig(a, b, left=False, right=True, overwrite_ab=False):
The right eigenvector corresponding to the eigenvalue
``alpha[i]/beta[i]`` is the column ``vr[:,i]``.
"""
ltype
,
a
,
b
=
lapack
.
prepare_for_lapack
(
overwrite_ab
,
a
,
b
)
if
a
.
ndim
!=
2
or
b
.
ndim
!=
2
:
raise
ValueError
(
"
gen_eig requires both a and be to be matrices
"
)
if
a
.
shape
[
0
]
!=
a
.
shape
[
1
]:
raise
ValueError
(
"
gen_eig requires square matrix input
"
)
if
b
.
shape
[
0
]
!=
a
.
shape
[
0
]
or
b
.
shape
[
1
]
!=
a
.
shape
[
1
]:
raise
ValueError
(
"
gen_eig requires a and be to have the same shape
"
)
ggev
=
getattr
(
lapack
,
ltype
+
"
ggev
"
)
return
ggev
(
a
,
b
,
left
,
right
)
return
lapack
.
ggev
(
a
,
b
,
left
,
right
)
This diff is collapsed.
Click to expand it.
kwant/linalg/lapack.pyx
+
111
−
239
View file @
8a19196e
...
...
@@ -11,7 +11,7 @@
__all__
=
[
'
getrf
'
,
'
getrs
'
,
'
gecon
'
,
'
sggev
'
,
'
dggev
'
,
'
cggev
'
,
'
z
ggev
'
,
'
ggev
'
,
'
sgees
'
,
'
dgees
'
,
'
cgees
'
,
'
zgees
'
,
'
strsen
'
,
'
dtrsen
'
,
'
ctrsen
'
,
'
ztrsen
'
,
'
strevc
'
,
'
dtrevc
'
,
'
ctrevc
'
,
'
ztrevc
'
,
...
...
@@ -213,7 +213,6 @@ def gecon(np.ndarray[scalar, ndim=2] LU, double normA, char *norm = b"1"):
else
:
return
drcond
# Wrappers for xGGEV
# Helper function for xGGEV
def
ggev_postprocess
(
dtype
,
alphar
,
alphai
,
vl_r
=
None
,
vr_r
=
None
):
...
...
@@ -248,281 +247,154 @@ def ggev_postprocess(dtype, alphar, alphai, vl_r=None, vr_r=None):
return
(
alpha
,
vl
,
vr
)
def
sggev
(
np
.
ndarray
[
np
.
float32_t
,
ndim
=
2
]
A
,
np
.
ndarray
[
np
.
float32_t
,
ndim
=
2
]
B
,
left
=
False
,
right
=
True
):
def
ggev
(
np
.
ndarray
[
scalar
,
ndim
=
2
]
A
,
np
.
ndarray
[
scalar
,
ndim
=
2
]
B
,
left
=
False
,
right
=
True
):
cdef
l_int
N
,
info
,
lwork
cdef
char
*
jobvl
cdef
char
*
jobvr
cdef
np
.
ndarray
[
np
.
float32_t
,
ndim
=
2
]
vl_r
,
vr_r
cdef
float
*
vl_ptr
cdef
float
*
vr_ptr
cdef
float
qwork
cdef
np
.
ndarray
[
np
.
float32_t
,
ndim
=
1
]
work
,
alphar
,
alphai
,
beta
assert_fortran_mat
(
A
,
B
)
N
=
A
.
shape
[
0
]
alphar
=
np
.
empty
(
N
,
dtype
=
np
.
float32
)
alphai
=
np
.
empty
(
N
,
dtype
=
np
.
float32
)
beta
=
np
.
empty
(
N
,
dtype
=
np
.
float32
)
if
left
:
vl_r
=
np
.
empty
((
N
,
N
),
dtype
=
np
.
float32
,
order
=
'
F
'
)
vl_ptr
=
<
float
*>
vl_r
.
data
jobvl
=
"
V
"
else
:
vl_r
=
None
vl_ptr
=
NULL
jobvl
=
"
N
"
if
right
:
vr_r
=
np
.
empty
((
N
,
N
),
dtype
=
np
.
float32
,
order
=
'
F
'
)
vr_ptr
=
<
float
*>
vr_r
.
data
jobvr
=
"
V
"
else
:
vr_r
=
None
vr_ptr
=
NULL
jobvr
=
"
N
"
# workspace query
lwork
=
-
1
lapack
.
sggev
(
jobvl
,
jobvr
,
&
N
,
<
float
*>
A
.
data
,
&
N
,
<
float
*>
B
.
data
,
&
N
,
<
float
*>
alphar
.
data
,
<
float
*>
alphai
.
data
,
<
float
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
&
qwork
,
&
lwork
,
&
info
)
assert
info
==
0
,
"
Argument error in sggev
"
lwork
=
<
l_int
>
qwork
work
=
np
.
empty
(
lwork
,
dtype
=
np
.
float32
)
# Now the real calculation
lapack
.
sggev
(
jobvl
,
jobvr
,
&
N
,
<
float
*>
A
.
data
,
&
N
,
<
float
*>
B
.
data
,
&
N
,
<
float
*>
alphar
.
data
,
<
float
*>
alphai
.
data
,
<
float
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
<
float
*>
work
.
data
,
&
lwork
,
&
info
)
if
info
>
0
:
raise
LinAlgError
(
"
QZ iteration failed to converge in sggev
"
)
# Parameter checks
assert
info
==
0
,
"
Argument error in sggev
"
assert
_fortran_mat
(
A
,
B
)
alpha
,
vl
,
vr
=
ggev_postprocess
(
np
.
complex64
,
alphar
,
alphai
,
vl_r
,
vr_r
)
if
A
.
ndim
!=
2
or
A
.
ndim
!=
2
:
raise
ValueError
(
"
gen_eig requires both a and be to be matrices
"
)
return
filter_args
((
True
,
True
,
left
,
right
),
(
alpha
,
beta
,
vl
,
vr
))
if
A
.
shape
[
0
]
!=
A
.
shape
[
1
]:
raise
ValueError
(
"
gen_eig requires square matrix input
"
)
if
A
.
shape
[
0
]
!=
B
.
shape
[
0
]
or
A
.
shape
[
1
]
!=
B
.
shape
[
1
]:
raise
ValueError
(
"
A and B do not have the same shape
"
)
def
dggev
(
np
.
ndarray
[
np
.
float64_t
,
ndim
=
2
]
A
,
np
.
ndarray
[
np
.
float64_t
,
ndim
=
2
]
B
,
left
=
False
,
right
=
True
):
cdef
l_int
N
,
info
,
lwork
cdef
char
*
jobvl
cdef
char
*
jobvr
cdef
np
.
ndarray
[
np
.
float64_t
,
ndim
=
2
]
vl_r
,
vr_r
cdef
double
*
vl_ptr
cdef
double
*
vr_ptr
cdef
double
qwork
cdef
np
.
ndarray
[
np
.
float64_t
,
ndim
=
1
]
work
,
alphar
,
alphai
,
beta
assert_fortran_mat
(
A
,
B
)
# Allocate workspaces
N
=
A
.
shape
[
0
]
alphar
=
np
.
empty
(
N
,
dtype
=
np
.
float64
)
alphai
=
np
.
empty
(
N
,
dtype
=
np
.
float64
)
beta
=
np
.
empty
(
N
,
dtype
=
np
.
float64
)
if
left
:
vl_r
=
np
.
empty
((
N
,
N
),
dtype
=
np
.
float64
,
order
=
'
F
'
)
vl_ptr
=
<
double
*>
vl_r
.
data
jobvl
=
"
V
"
else
:
vl_r
=
None
vl_ptr
=
NULL
jobvl
=
"
N
"
if
right
:
vr_r
=
np
.
empty
((
N
,
N
),
dtype
=
np
.
float64
,
order
=
'
F
'
)
vr_ptr
=
<
double
*>
vr_r
.
data
jobvr
=
"
V
"
cdef
np
.
ndarray
[
scalar
]
alphar
,
alphai
if
scalar
in
cmplx
:
alphar
=
np
.
empty
(
N
,
dtype
=
A
.
dtype
)
alphai
=
None
else
:
vr_r
=
None
vr_ptr
=
NULL
jobvr
=
"
N
"
alphar
=
np
.
empty
(
N
,
dtype
=
A
.
dtype
)
alphai
=
np
.
empty
(
N
,
dtype
=
A
.
dtype
)
# workspace query
lwork
=
-
1
lapack
.
dggev
(
jobvl
,
jobvr
,
&
N
,
<
double
*>
A
.
data
,
&
N
,
<
double
*>
B
.
data
,
&
N
,
<
double
*>
alphar
.
data
,
<
double
*>
alphai
.
data
,
<
double
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
&
qwork
,
&
lwork
,
&
info
)
assert
info
==
0
,
"
Argument error in dggev
"
lwork
=
<
l_int
>
qwork
work
=
np
.
empty
(
lwork
,
dtype
=
np
.
float64
)
# Now the real calculation
lapack
.
dggev
(
jobvl
,
jobvr
,
&
N
,
<
double
*>
A
.
data
,
&
N
,
<
double
*>
B
.
data
,
&
N
,
<
double
*>
alphar
.
data
,
<
double
*>
alphai
.
data
,
<
double
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
<
double
*>
work
.
data
,
&
lwork
,
&
info
)
if
info
>
0
:
raise
LinAlgError
(
"
QZ iteration failed to converge in dggev
"
)
assert
info
==
0
,
"
Argument error in dggev
"
alpha
,
vl
,
vr
=
ggev_postprocess
(
np
.
complex128
,
alphar
,
alphai
,
vl_r
,
vr_r
)
return
filter_args
((
True
,
True
,
left
,
right
),
(
alpha
,
beta
,
vl
,
vr
))
cdef
np
.
ndarray
[
scalar
]
beta
=
np
.
empty
(
N
,
dtype
=
A
.
dtype
)
cdef
np
.
ndarray
rwork
=
None
if
scalar
is
float_complex
:
rwork
=
np
.
empty
(
8
*
N
,
dtype
=
np
.
float32
)
elif
scalar
is
double_complex
:
rwork
=
np
.
empty
(
8
*
N
,
dtype
=
np
.
float64
)
def
cggev
(
np
.
ndarray
[
np
.
complex64_t
,
ndim
=
2
]
A
,
np
.
ndarray
[
np
.
complex64_t
,
ndim
=
2
]
B
,
left
=
False
,
right
=
True
):
cdef
l_int
N
,
info
,
lwork
cdef
np
.
ndarray
vl
cdef
scalar
*
vl_ptr
cdef
char
*
jobvl
cdef
char
*
jobvr
cdef
np
.
ndarray
[
np
.
complex64_t
,
ndim
=
2
]
vl
,
vr
cdef
float
complex
*
vl_ptr
cdef
float
complex
*
vr_ptr
cdef
float
complex
qwork
cdef
np
.
ndarray
[
np
.
complex64_t
,
ndim
=
1
]
work
,
alpha
,
beta
cdef
np
.
ndarray
[
np
.
float32_t
,
ndim
=
1
]
rwork
assert_fortran_mat
(
A
,
B
)
N
=
A
.
shape
[
0
]
alpha
=
np
.
empty
(
N
,
dtype
=
np
.
complex64
)
beta
=
np
.
empty
(
N
,
dtype
=
np
.
complex64
)
if
left
:
vl
=
np
.
empty
((
N
,
N
),
dtype
=
np
.
complex64
,
order
=
'
F
'
)
vl_ptr
=
<
float
complex
*>
vl
.
data
vl
=
np
.
empty
((
N
,
N
),
dtype
=
A
.
dtype
,
order
=
'
F
'
)
vl_ptr
=
<
scalar
*>
vl
.
data
jobvl
=
"
V
"
else
:
vl
=
None
vl_ptr
=
NULL
jobvl
=
"
N
"
cdef
np
.
ndarray
vr
cdef
scalar
*
vr_ptr
cdef
char
*
jobvr
if
right
:
vr
=
np
.
empty
((
N
,
N
),
dtype
=
np
.
complex64
,
order
=
'
F
'
)
vr_ptr
=
<
float
complex
*>
vr
.
data
vr
=
np
.
empty
((
N
,
N
),
dtype
=
A
.
dtype
,
order
=
'
F
'
)
vr_ptr
=
<
scalar
*>
vr
.
data
jobvr
=
"
V
"
else
:
vr
=
None
vr_ptr
=
NULL
jobvr
=
"
N
"
rwork
=
np
.
empty
(
8
*
N
,
dtype
=
np
.
float32
)
# workspace query
# Workspace query
# Xggev expects &qwork as a <scalar *> (even though it's an integer)
lwork
=
-
1
work
=
np
.
empty
(
1
,
dtype
=
np
.
complex64
)
lapack
.
cggev
(
jobvl
,
jobvr
,
&
N
,
<
float
complex
*>
A
.
data
,
&
N
,
<
float
complex
*>
B
.
data
,
&
N
,
<
float
complex
*>
alpha
.
data
,
<
float
complex
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
&
qwork
,
&
lwork
,
<
float
*>
rwork
.
data
,
&
info
)
assert
info
==
0
,
"
Argument error in cggev
"
lwork
=
<
l_int
>
qwork
.
real
work
=
np
.
empty
(
lwork
,
dtype
=
np
.
complex64
)
# Now the real calculation
lapack
.
cggev
(
jobvl
,
jobvr
,
&
N
,
<
float
complex
*>
A
.
data
,
&
N
,
<
float
complex
*>
B
.
data
,
&
N
,
<
float
complex
*>
alpha
.
data
,
<
float
complex
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
<
float
complex
*>
work
.
data
,
&
lwork
,
<
float
*>
rwork
.
data
,
&
info
)
cdef
scalar
qwork
if
info
>
0
:
raise
LinAlgError
(
"
QZ iteration failed to converge in cggev
"
)
assert
info
==
0
,
"
Argument error in cggev
"
return
filter_args
((
True
,
True
,
left
,
right
),
(
alpha
,
beta
,
vl
,
vr
))
def
zggev
(
np
.
ndarray
[
np
.
complex128_t
,
ndim
=
2
]
A
,
np
.
ndarray
[
np
.
complex128_t
,
ndim
=
2
]
B
,
left
=
False
,
right
=
True
):
cdef
l_int
N
,
info
,
lwork
cdef
char
*
jobvl
cdef
char
*
jobvr
cdef
np
.
ndarray
[
np
.
complex128_t
,
ndim
=
2
]
vl
,
vr
cdef
double
complex
*
vl_ptr
cdef
double
complex
*
vr_ptr
cdef
double
complex
qwork
cdef
np
.
ndarray
[
np
.
complex128_t
,
ndim
=
1
]
work
,
alpha
,
beta
cdef
np
.
ndarray
[
np
.
float64_t
,
ndim
=
1
]
rwork
assert_fortran_mat
(
A
,
B
)
N
=
A
.
shape
[
0
]
alpha
=
np
.
empty
(
N
,
dtype
=
np
.
complex128
)
beta
=
np
.
empty
(
N
,
dtype
=
np
.
complex128
)
if
scalar
is
float
:
lapack
.
sggev
(
jobvl
,
jobvr
,
&
N
,
<
float
*>
A
.
data
,
&
N
,
<
float
*>
B
.
data
,
&
N
,
<
float
*>
alphar
.
data
,
<
float
*>
alphai
.
data
,
<
float
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
&
qwork
,
&
lwork
,
&
info
)
elif
scalar
is
double
:
lapack
.
dggev
(
jobvl
,
jobvr
,
&
N
,
<
double
*>
A
.
data
,
&
N
,
<
double
*>
B
.
data
,
&
N
,
<
double
*>
alphar
.
data
,
<
double
*>
alphai
.
data
,
<
double
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
&
qwork
,
&
lwork
,
&
info
)
elif
scalar
is
float_complex
:
lapack
.
cggev
(
jobvl
,
jobvr
,
&
N
,
<
float
complex
*>
A
.
data
,
&
N
,
<
float
complex
*>
B
.
data
,
&
N
,
<
float
complex
*>
alphar
.
data
,
<
float
complex
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
&
qwork
,
&
lwork
,
<
float
*>
rwork
.
data
,
&
info
)
elif
scalar
is
double_complex
:
lapack
.
zggev
(
jobvl
,
jobvr
,
&
N
,
<
double
complex
*>
A
.
data
,
&
N
,
<
double
complex
*>
B
.
data
,
&
N
,
<
double
complex
*>
alphar
.
data
,
<
double
complex
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
&
qwork
,
&
lwork
,
<
double
*>
rwork
.
data
,
&
info
)
if
left
:
vl
=
np
.
empty
((
N
,
N
),
dtype
=
np
.
complex128
,
order
=
'
F
'
)
vl_ptr
=
<
double
complex
*>
vl
.
data
jobvl
=
"
V
"
else
:
vl_ptr
=
NULL
jobvl
=
"
N
"
assert
info
==
0
,
"
Argument error in ggev
"
if
right
:
vr
=
np
.
empty
((
N
,
N
),
dtype
=
np
.
complex128
,
order
=
'
F
'
)
vr_ptr
=
<
double
complex
*>
vr
.
data
jobvr
=
"
V
"
if
scalar
in
floating
:
lwork
=
<
l_int
>
qwork
else
:
vr_ptr
=
NULL
jobvr
=
"
N
"
rwork
=
np
.
empty
(
8
*
N
,
dtype
=
np
.
float64
)
lwork
=
<
l_int
>
qwork
.
real
cdef
np
.
ndarray
[
scalar
]
work
=
np
.
empty
(
lwork
,
dtype
=
A
.
dtype
)
# workspace query
lwork
=
-
1
work
=
np
.
empty
(
1
,
dtype
=
np
.
complex128
)
lapack
.
zggev
(
jobvl
,
jobvr
,
&
N
,
<
double
complex
*>
A
.
data
,
&
N
,
<
double
complex
*>
B
.
data
,
&
N
,
<
double
complex
*>
alpha
.
data
,
<
double
complex
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
&
qwork
,
&
lwork
,
<
double
*>
rwork
.
data
,
&
info
)
# The actual calculation
assert
info
==
0
,
"
Argument error in zggev
"
if
scalar
is
float
:
lapack
.
sggev
(
jobvl
,
jobvr
,
&
N
,
<
float
*>
A
.
data
,
&
N
,
<
float
*>
B
.
data
,
&
N
,
<
float
*>
alphar
.
data
,
<
float
*>
alphai
.
data
,
<
float
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
<
float
*>
work
.
data
,
&
lwork
,
&
info
)
elif
scalar
is
double
:
lapack
.
dggev
(
jobvl
,
jobvr
,
&
N
,
<
double
*>
A
.
data
,
&
N
,
<
double
*>
B
.
data
,
&
N
,
<
double
*>
alphar
.
data
,
<
double
*>
alphai
.
data
,
<
double
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
<
double
*>
work
.
data
,
&
lwork
,
&
info
)
elif
scalar
is
float_complex
:
lapack
.
cggev
(
jobvl
,
jobvr
,
&
N
,
<
float
complex
*>
A
.
data
,
&
N
,
<
float
complex
*>
B
.
data
,
&
N
,
<
float
complex
*>
alphar
.
data
,
<
float
complex
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
<
float
complex
*>
work
.
data
,
&
lwork
,
<
float
*>
rwork
.
data
,
&
info
)
elif
scalar
is
double_complex
:
lapack
.
zggev
(
jobvl
,
jobvr
,
&
N
,
<
double
complex
*>
A
.
data
,
&
N
,
<
double
complex
*>
B
.
data
,
&
N
,
<
double
complex
*>
alphar
.
data
,
<
double
complex
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
<
double
complex
*>
work
.
data
,
&
lwork
,
<
double
*>
rwork
.
data
,
&
info
)
lwork
=
<
l_int
>
qwork
.
real
work
=
np
.
empty
(
lwork
,
dtype
=
np
.
complex128
)
if
info
>
0
:
raise
LinAlgError
(
"
QZ iteration failed to converge in sggev
"
)
# Now the real calculation
lapack
.
zggev
(
jobvl
,
jobvr
,
&
N
,
<
double
complex
*>
A
.
data
,
&
N
,
<
double
complex
*>
B
.
data
,
&
N
,
<
double
complex
*>
alpha
.
data
,
<
double
complex
*>
beta
.
data
,
vl_ptr
,
&
N
,
vr_ptr
,
&
N
,
<
double
complex
*>
work
.
data
,
&
lwork
,
<
double
*>
rwork
.
data
,
&
info
)
assert
info
==
0
,
"
Argument error in ggev
"
if
info
>
0
:
raise
LinAlgError
(
"
QZ iteration failed to converge in zggev
"
)
if
scalar
is
float
:
post_dtype
=
np
.
complex64
elif
scalar
is
double
:
post_dtype
=
np
.
complex128
assert
info
==
0
,
"
Argument error in zggev
"
cdef
np
.
ndarray
alpha
alpha
=
alphar
if
scalar
in
floating
:
alpha
,
vl
,
vr
=
ggev_postprocess
(
post_dtype
,
alphar
,
alphai
,
vl
,
vr
)
return
filter_args
((
True
,
True
,
left
,
right
),
(
alpha
,
beta
,
vl
,
vr
))
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment