Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
L
lectures
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Mathematics for Quantum Physics
lectures
Commits
b08646cf
Commit
b08646cf
authored
4 years ago
by
Michael Wimmer
Browse files
Options
Downloads
Patches
Plain Diff
fix some more math formatting
parent
228eb4c4
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#43782
passed
4 years ago
Stage: build
Stage: deploy
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/8_differential_equations_2.md
+21
-21
21 additions, 21 deletions
src/8_differential_equations_2.md
with
21 additions
and
21 deletions
src/8_differential_equations_2.md
+
21
−
21
View file @
b08646cf
...
...
@@ -76,7 +76,7 @@ $$y(x) = c_1 f_1 (x) + c_2 f_2 (x) + \cdots + c_n f_{n}(x). $$
To check that the $n$ solutions form a basis, it is sufficient to verify
$$ det
\b
egin{bmatrix}
$$
\
d
et
\b
egin{bmatrix}
f_1(x) &
\c
dots & f_{n}(x)
\\
f_1 ' (x) &
\c
dots & f_{n}'(x)
\\
\v
dots &
\v
dots &
\v
dots
\\
...
...
@@ -98,7 +98,7 @@ $$A = \begin{bmatrix}
It is possible to show that
$$det(A -
\l
ambda I) = -P(
\l
ambda),$$
$$
\
d
et(A -
\l
ambda I) = -P(
\l
ambda),$$
in which $P(
\l
ambda)$ is the characteristic polynomial of the system matrix $A$,
...
...
@@ -107,37 +107,37 @@ $$P(\lambda) = \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_0.$$
As we demonstrate below, the proof relies on the co-factor expansion technique
for calculating a determinant.
$$- det(A -
\l
ambda I) =
\b
egin{bmatrix}
$$-
\
d
et(A -
\l
ambda I) =
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\c
dots & 0
\\
0 &
\l
ambda & -1 &
\c
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\c
dots &
\v
dots
\\
a_0 & a_1 & a_2 &
\c
dots & a_{n-1} +
\l
ambda
\\
\e
nd{bmatrix} $$
$$- det(A -
\l
ambda I) =
\l
ambda det
\b
egin{bmatrix}
$$-
\
d
et(A -
\l
ambda I) =
\l
ambda
\
d
et
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\c
dots & 0
\\
0 &
\l
ambda & -1 &
\c
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\c
dots &
\v
dots
\\
a_1 & a_2 & a_3 &
\c
dots & a_{n-1} +
\l
ambda
\\
\e
nd{bmatrix} + (-1)^{n+1}a_0 det
\b
egin{bmatrix}
\e
nd{bmatrix} + (-1)^{n+1}a_0
\
d
et
\b
egin{bmatrix}
-1 & 0 & 0 &
\c
dots & 0
\\
\l
ambda & -1 & 0 & cdots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\c
dots &
\v
dots
\\
0 & 0 &
\c
dots &
\l
ambda & -1
\\
\e
nd{bmatrix}$$
$$- det(A -
\l
ambda I) =
\l
ambda det
\b
egin{bmatrix}
$$-
\
d
et(A -
\l
ambda I) =
\l
ambda
\
d
et
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\c
dots & 0
\\
0 &
\l
ambda & -1 &
\c
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\c
dots &
\v
dots
\\
a_1 & a_2 & a_3 &
\c
dots & a_{n-1} +
\l
ambda
\\
\e
nd{bmatrix} + (-1)^{n+1} a_0 (-1)^{n-1}$$
$$- det(A -
\l
ambda I) =
\l
ambda det
\b
egin{bmatrix}
$$-
\
d
et(A -
\l
ambda I) =
\l
ambda
\
d
et
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\c
dots & 0
\\
0 &
\l
ambda & -1 &
\c
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\c
dots &
\v
dots
\\
a_1 & a_2 & a_3 &
\c
dots & a_{n-1} +
\l
ambda
\\
\e
nd{bmatrix} + a_0$$
$$- det(A -
\l
ambda I) =
\l
ambda (
\l
ambda (
\l
ambda
\c
dots + a_2) + a_1) + a_0$$
$$- det(A -
\l
ambda I) = P(
\l
ambda).$$
$$-
\
d
et(A -
\l
ambda I) =
\l
ambda (
\l
ambda (
\l
ambda
\c
dots + a_2) + a_1) + a_0$$
$$-
\
d
et(A -
\l
ambda I) = P(
\l
ambda).$$
In the second last line of the proof we indicated that the method of co-factor
expansion demonstrated is repeated an additional $n-2$ times. This completes the
...
...
@@ -198,7 +198,7 @@ $$f(x) = e^{\lambda_1 x}, \ x e^{\lambda_1 x} , \ \cdots, \ x^{m_{1}-1} e^{\lamb
since they are linear combinations of $f_1$ and $f_2$ which remain linearly
independent,
$$\tilde{f_1}(x)=cos(kx), \tilde{f_2}(x)=sin{kx}.$$
$$\tilde{f_1}(x)=
\
cos(kx), \tilde{f_2}(x)=sin{kx}.$$
**Case 2: $E<0$**
This time, define $E=-k^2$, for constant $k$. The characteristic polynomial
...
...
@@ -369,7 +369,7 @@ $$\phi''(x)+k^2 \phi(x)=0.$$
Two linearly independent solutions to this equation are
$$
\p
hi_{1}(x)=sin(k x),
\ \p
hi_{2}(x) = cos(k x).$$
$$
\p
hi_{1}(x)=
\
s
in(k x),
\ \p
hi_{2}(x) =
\
c
os(k x).$$
The solution to this homogeneous equation is then
...
...
@@ -378,11 +378,11 @@ $$\phi(x)=c_1 \phi_1(x)+c_2 \phi_2(x).$$
The eigenvalue, $
\l
ambda$ as well as one of the constant coefficients can be
determined using the boundary conditions.
$$
\p
hi(0)=0
\ \R
ightarrow
\ \p
hi(x)=c_1 sin(k x),
\
c_2=0.$$
$$
\p
hi(0)=0
\ \R
ightarrow
\ \p
hi(x)=c_1
\
s
in(k x),
\
c_2=0.$$
$$
\p
hi(L)=0
\ \R
ightarrow
\
0=c_1 sin(k L) .$$
$$
\p
hi(L)=0
\ \R
ightarrow
\
0=c_1
\
s
in(k L) .$$
In turn, using the properties of the $sin(
\c
dot)$ function, it is now possible
In turn, using the properties of the $
\
s
in(
\c
dot)$ function, it is now possible
to find the allowed values of $k$ and hence also $
\l
ambda$. The previous
equation implies,
...
...
@@ -404,7 +404,7 @@ PDE was supplied with an initial condition.
Putting the solutions to the two ODEs together and redefining
$
\t
ilde{A}=A
\c
dot c_1$, we arrive at the solutions for theb PDE,
$
\p
si_n(x,t) =
\t
ilde{A}_n e^{-i
\f
rac{
\l
ambda_n t}{
\h
bar}} sin(
\f
rac{n
\p
i x}{L}).$
$
\p
si_n(x,t) =
\t
ilde{A}_n e^{-i
\f
rac{
\l
ambda_n t}{
\h
bar}}
\
s
in(
\f
rac{n
\p
i x}{L}).$
Notice that there is one solution $
\p
si_{n}(x,t)$ for each natural number $n$.
These are still very special solutions. We will begin discussing next how to
...
...
@@ -488,18 +488,18 @@ the eigenfunctions of $L$.
In terms of hermitian operators and their eigenfunctions, the eigenfunctions
play the role of the orthonormal basis. In reference to our running example,
the 1D Schrödinger equation of a free particle, the eigenfunctions
$sin(
\f
rac{n
\p
i x}{L})$ play the role of the basis functions $
\k
et{u_n}$.
$
\
s
in(
\f
rac{n
\p
i x}{L})$ play the role of the basis functions $
\k
et{u_n}$.
To close our running example, consider the initial condition
$
\p
si(x,o) =
\p
si_{0}(x)$. Since the eigenfunctions $sin(
\f
rac{n
\p
i x}{L})$
$
\p
si(x,o) =
\p
si_{0}(x)$. Since the eigenfunctions $
\
s
in(
\f
rac{n
\p
i x}{L})$
form a basis, we can now write the general solution to the problem as
$$
\p
si(x,t) =
\o
verset{
\i
nfinity}{
\u
nderset{n}{
\S
igma}} c_n e^{-i
\f
rac{
\l
ambda_n t}{
\h
bar}} sin(
\f
rac{n
\p
i x}{L}),$$
$$
\p
si(x,t) =
\o
verset{
\i
nfinity}{
\u
nderset{n}{
\S
igma}} c_n e^{-i
\f
rac{
\l
ambda_n t}{
\h
bar}}
\
s
in(
\f
rac{n
\p
i x}{L}),$$
where in the above we have defined the coefficients using the Fourier
coefficient,
$$c_n:=
\i
nt^{L}_{0} dx sin(
\f
rac{n
\p
i x}{L})
\p
si_{0}(x). $$
$$c_n:=
\i
nt^{L}_{0} dx
\
s
in(
\f
rac{n
\p
i x}{L})
\p
si_{0}(x). $$
### General recipie for seperable PDEs
...
...
@@ -530,9 +530,9 @@ necessary to work with numerical methods of solution.
1.
[:grinning:] Which of the following equations for $y(x)$ is linear?
(a) y''' - y'' + x cos(x) y' + y - 1 = 0
(a) y''' - y'' + x
\
cos(x) y' + y - 1 = 0
(b) y''' + 4 x y' - cos(x) y = 0
(b) y''' + 4 x y' -
\
cos(x) y = 0
(c) y'' + y y' = 0
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment