Skip to content
Snippets Groups Projects
Commit b08646cf authored by Michael Wimmer's avatar Michael Wimmer
Browse files

fix some more math formatting

parent 228eb4c4
No related branches found
No related tags found
No related merge requests found
Pipeline #43782 passed
......@@ -76,7 +76,7 @@ $$y(x) = c_1 f_1 (x) + c_2 f_2 (x) + \cdots + c_n f_{n}(x). $$
To check that the $n$ solutions form a basis, it is sufficient to verify
$$ det \begin{bmatrix}
$$ \det \begin{bmatrix}
f_1(x) & \cdots & f_{n}(x) \\
f_1 ' (x) & \cdots & f_{n}'(x) \\
\vdots & \vdots & \vdots \\
......@@ -98,7 +98,7 @@ $$A = \begin{bmatrix}
It is possible to show that
$$det(A - \lambda I) = -P(\lambda),$$
$$\det(A - \lambda I) = -P(\lambda),$$
in which $P(\lambda)$ is the characteristic polynomial of the system matrix $A$,
......@@ -107,37 +107,37 @@ $$P(\lambda) = \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_0.$$
As we demonstrate below, the proof relies on the co-factor expansion technique
for calculating a determinant.
$$- det(A - \lambda I) = \begin{bmatrix}
$$- \det(A - \lambda I) = \begin{bmatrix}
\lambda & -1 & 0 & \cdots & 0 \\
0 & \lambda & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_0 & a_1 & a_2 & \cdots & a_{n-1} + \lambda \\
\end{bmatrix} $$
$$- det(A - \lambda I) = \lambda det \begin{bmatrix}
$$- \det(A - \lambda I) = \lambda \det \begin{bmatrix}
\lambda & -1 & 0 & \cdots & 0 \\
0 & \lambda & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\
\end{bmatrix} + (-1)^{n+1}a_0 det \begin{bmatrix}
\end{bmatrix} + (-1)^{n+1}a_0 \det \begin{bmatrix}
-1 & 0 & 0 & \cdots & 0 \\
\lambda & -1 & 0 & cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \lambda & -1 \\
\end{bmatrix}$$
$$- det(A - \lambda I) = \lambda det \begin{bmatrix}
$$- \det(A - \lambda I) = \lambda \det \begin{bmatrix}
\lambda & -1 & 0 & \cdots & 0 \\
0 & \lambda & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\
\end{bmatrix} + (-1)^{n+1} a_0 (-1)^{n-1}$$
$$- det(A - \lambda I) = \lambda det \begin{bmatrix}
$$- \det(A - \lambda I) = \lambda \det \begin{bmatrix}
\lambda & -1 & 0 & \cdots & 0 \\
0 & \lambda & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\
\end{bmatrix} + a_0$$
$$- det(A - \lambda I) = \lambda (\lambda (\lambda \cdots + a_2) + a_1) + a_0$$
$$- det(A - \lambda I) = P(\lambda).$$
$$- \det(A - \lambda I) = \lambda (\lambda (\lambda \cdots + a_2) + a_1) + a_0$$
$$- \det(A - \lambda I) = P(\lambda).$$
In the second last line of the proof we indicated that the method of co-factor
expansion demonstrated is repeated an additional $n-2$ times. This completes the
......@@ -198,7 +198,7 @@ $$f(x) = e^{\lambda_1 x}, \ x e^{\lambda_1 x} , \ \cdots, \ x^{m_{1}-1} e^{\lamb
since they are linear combinations of $f_1$ and $f_2$ which remain linearly
independent,
$$\tilde{f_1}(x)=cos(kx), \tilde{f_2}(x)=sin{kx}.$$
$$\tilde{f_1}(x)=\cos(kx), \tilde{f_2}(x)=sin{kx}.$$
**Case 2: $E<0$**
This time, define $E=-k^2$, for constant $k$. The characteristic polynomial
......@@ -369,7 +369,7 @@ $$\phi''(x)+k^2 \phi(x)=0.$$
Two linearly independent solutions to this equation are
$$\phi_{1}(x)=sin(k x), \ \phi_{2}(x) = cos(k x).$$
$$\phi_{1}(x)=\sin(k x), \ \phi_{2}(x) = \cos(k x).$$
The solution to this homogeneous equation is then
......@@ -378,11 +378,11 @@ $$\phi(x)=c_1 \phi_1(x)+c_2 \phi_2(x).$$
The eigenvalue, $\lambda$ as well as one of the constant coefficients can be
determined using the boundary conditions.
$$\phi(0)=0 \ \Rightarrow \ \phi(x)=c_1 sin(k x), \ c_2=0.$$
$$\phi(0)=0 \ \Rightarrow \ \phi(x)=c_1 \sin(k x), \ c_2=0.$$
$$\phi(L)=0 \ \Rightarrow \ 0=c_1 sin(k L) .$$
$$\phi(L)=0 \ \Rightarrow \ 0=c_1 \sin(k L) .$$
In turn, using the properties of the $sin(\cdot)$ function, it is now possible
In turn, using the properties of the $\sin(\cdot)$ function, it is now possible
to find the allowed values of $k$ and hence also $\lambda$. The previous
equation implies,
......@@ -404,7 +404,7 @@ PDE was supplied with an initial condition.
Putting the solutions to the two ODEs together and redefining
$\tilde{A}=A \cdot c_1$, we arrive at the solutions for theb PDE,
$\psi_n(x,t) = \tilde{A}_n e^{-i \frac{\lambda_n t}{\hbar}} sin(\frac{n \pi x}{L}).$
$\psi_n(x,t) = \tilde{A}_n e^{-i \frac{\lambda_n t}{\hbar}} \sin(\frac{n \pi x}{L}).$
Notice that there is one solution $\psi_{n}(x,t)$ for each natural number $n$.
These are still very special solutions. We will begin discussing next how to
......@@ -488,18 +488,18 @@ the eigenfunctions of $L$.
In terms of hermitian operators and their eigenfunctions, the eigenfunctions
play the role of the orthonormal basis. In reference to our running example,
the 1D Schrödinger equation of a free particle, the eigenfunctions
$sin(\frac{n \pi x}{L})$ play the role of the basis functions $\ket{u_n}$.
$\sin(\frac{n \pi x}{L})$ play the role of the basis functions $\ket{u_n}$.
To close our running example, consider the initial condition
$\psi(x,o) = \psi_{0}(x)$. Since the eigenfunctions $sin(\frac{n \pi x}{L})$
$\psi(x,o) = \psi_{0}(x)$. Since the eigenfunctions $\sin(\frac{n \pi x}{L})$
form a basis, we can now write the general solution to the problem as
$$\psi(x,t) = \overset{\infinity}{\underset{n}{\Sigma}} c_n e^{-i \frac{\lambda_n t}{\hbar}} sin(\frac{n \pi x}{L}),$$
$$\psi(x,t) = \overset{\infinity}{\underset{n}{\Sigma}} c_n e^{-i \frac{\lambda_n t}{\hbar}} \sin(\frac{n \pi x}{L}),$$
where in the above we have defined the coefficients using the Fourier
coefficient,
$$c_n:= \int^{L}_{0} dx sin(\frac{n \pi x}{L}) \psi_{0}(x). $$
$$c_n:= \int^{L}_{0} dx \sin(\frac{n \pi x}{L}) \psi_{0}(x). $$
### General recipie for seperable PDEs
......@@ -530,9 +530,9 @@ necessary to work with numerical methods of solution.
1. [:grinning:] Which of the following equations for $y(x)$ is linear?
(a) y''' - y'' + x cos(x) y' + y - 1 = 0
(a) y''' - y'' + x \cos(x) y' + y - 1 = 0
(b) y''' + 4 x y' - cos(x) y = 0
(b) y''' + 4 x y' - \cos(x) y = 0
(c) y'' + y y' = 0
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment