1st major update to lecture note 4
Compare changes
- Maciej Topyla authored
+ 38
− 18
@@ -14,7 +14,7 @@ The lecture on vector spaces in quantum mechanics consists of the following part
@@ -76,37 +76,57 @@ The set of all possible state vectors describing a given physical system forms a
We need now to extend the Dirac notation to describe other elements of this vector space. We need to introduce a quantity $\langle{\Psi}|$, known as a *bra vector*, which represents the *complex conjugates* of the corresponding ket vector. Bra vectors are elements of the vector space $\mathcal{H}^{*}$, called the *dual space* of the original Hilbert space $\mathcal{H}$.
The value of the inner product $\langle{\psi}|{\phi}\rangle$ indicates the *probability amplitude* (not the probability) of measuring a system characterised by the state $|{\phi}\rangle$ to be in the state $|{\psi}\rangle$. This inner product can also be understood as measuring the *overlap* between the state vectors $|{\psi}\rangle$ and $|{\phi}\rangle$. Then the *probability* of observing the system to be in the state $|\psi\rangle$ given that it is in the state $|\phi\rangle$ will be given by $|\langle \psi | \phi \rangle|^2$. Since the latter quantity is a probability, we know that it should satisfy the condition that $0 \le |\langle \psi | \phi \rangle|^2 \le 1$.
- *Orthogonality*: two states $|\psi \rangle$ and $|\phi \rangle$ are said to be *orthogonal* if $\langle \psi | \phi\rangle=0$. By analogy with regular vector spaces, we can think of these two state vectors $|\psi \rangle$ and $|\phi \rangle$ as being *perpendicular* to each other. Note that for a quantum system occupying a certain state, there is a vanishing probability of it being observed in a state orthogonal to it.