1st major update to lecture note 4
Compare changes
- Maciej Topyla authored
+ 5
− 5
@@ -51,27 +51,27 @@ This vector space is known as the *state space* of the system.
The set of all possible state vectors describing a given physical system forms a complex vector space $\mathcal{H}$, which is known as the *Hilbert space* of the system. You can think of the Hilbert space as the space populated by all possible states that a quantum system can be found on. Hilbert spaces inherit a number of the important properties of general vector spaces:
A linear combination (or superposition) of two or more state vectors $|{\psi_1}\rangle, |{\psi_2}\rangle, |{\psi_3}\rangle,... |{\psi_n}\rangle$, is also a state of the quantum system. Therefore, a linear combination $|{\Psi}\rangle$ of the form $$|{\Psi}\rangle=c_1|{\psi_1}\rangle+c_2|{\psi_1}\rangle+c_3|{\psi_3}\rangle+...+c_n|{\psi_n}\rangle = \sum_{i=1}^n c_i|{\psi_i}\rangle$$
If a physical state of the system is given by a vector $|{\Psi}\rangle$, then the same physical state can also be represented by the vector $c|{\Psi}\rangle$ where $c$ is a non-zero complex number. The reason for this is that the overall normalisation of the state vector *does not change the physics* of the system (or in other words, does not modify the *information content* of the state vector). As we will discuss below, in quantum mechanics it is advantageous to work with *normalised vectors*, that is, whose *length* is one.
A set of vectors \{$|{\psi_i}\rangle$\} is said to form a basis for the state space if the set of vectors is *complete* and if in addition they are *linearly independent*. The latter condition means essentially that one cannot express a given basis vector as a linear combination of the rest of basis vectors.
The minimum number of vectors needed to form a complete set of basis states is known as the *dimensionality* of the state space. In quantum mechanis you will encounter systems whose Hilbert spaces have very different dimensionality, from the spin-1/2 particle (a $n=2$ vector space) to the free particle (whose state vectors live in an infinite vector space).