Skip to content
Snippets Groups Projects

WIP: (feature) add anisotropic meshing to LearnerND

Open Jorn Hoofwijk requested to merge 74--add-anisotropicity-to-learnerND into master
Compare and
4 files
+ 145
17
Compare changes
  • Side-by-side
  • Inline
Files
4
@@ -12,8 +12,9 @@ from .base_learner import BaseLearner
from ..notebook_integration import ensure_holoviews
from .triangulation import (Triangulation, point_in_simplex,
circumsphere, simplex_volume_in_embedding)
circumsphere, simplex_volume_in_embedding, FakeDelaunay)
from ..utils import restore
import math
def volume(simplex, ys=None):
@@ -155,7 +156,7 @@ class LearnerND(BaseLearner):
children based on volume.
"""
def __init__(self, func, bounds, loss_per_simplex=None):
def __init__(self, func, bounds, loss_per_simplex=None, anisotropic=False):
self.ndim = len(bounds)
self._vdim = None
self.loss_per_simplex = loss_per_simplex or default_loss
@@ -175,10 +176,15 @@ class LearnerND(BaseLearner):
self._subtriangulations = dict() # simplex -> triangulation
# scale to unit
self._transform = np.linalg.inv(np.diag(np.diff(bounds).flat))
self._scale_matrix = np.linalg.inv(np.diag(np.diff(bounds).flat))
# create a private random number generator with fixed seed
self._random = random.Random(1)
self.anisotripic = anisotropic
# all real triangles that have not been subdivided and the pending
# triangles heap of tuples (-loss, real simplex, sub_simplex or None)
self._losses_combined = [] # heap
# all real triangles that have not been subdivided and the pending
# triangles heap of tuples (-loss, real simplex, sub_simplex or None)
@@ -212,8 +218,9 @@ class LearnerND(BaseLearner):
return all(p in self.data for p in self._bounds_points)
def ip(self):
# XXX: take our own triangulation into account when generating the ip
return interpolate.LinearNDInterpolator(self.points, self.values)
tri = FakeDelaunay(self.tri.vertices, self.tri.simplices)
values = [self.data[k] for k in self.tri.vertices]
return interpolate.LinearNDInterpolator(tri, values)
@property
def tri(self):
@@ -240,7 +247,6 @@ class LearnerND(BaseLearner):
def tell(self, point, value):
point = tuple(point)
if point in self.data:
return # we already know about the point
@@ -257,17 +263,60 @@ class LearnerND(BaseLearner):
if tri is not None:
simplex = self._pending_to_simplex.get(point)
if simplex is not None and not self._simplex_exists(simplex):
simplex = None
to_delete, to_add = tri.add_point(
point, simplex, transform=self._transform)
simplex = self.tri.locate_point(point)
transform = self.get_local_transform_matrix(simplex)
to_delete, to_add = self._tri.add_point(
point, simplex, transform=transform)
self.update_losses(to_delete, to_add)
def get_local_transform_matrix(self, simplex):
scale = self._scale_matrix
if simplex is None or self.tri is None or not self.anisotripic:
return scale
neighbours = set.union(*[self.tri.vertex_to_simplices[i] for i in simplex])
indices = set.union(set(), *neighbours)
points = np.array([self.points[i] for i in indices])
values = [self.data[tuple(p)] for p in points]
if isinstance(values[0], Iterable):
raise ValueError("Anisotropic learner only works with 1D output")
# Do a linear least square fit
# A x = B, find x
points = np.dot(scale, points.T).T
ones = np.ones((len(points), 1))
A = np.hstack((points, ones))
B = np.array(values, dtype=float)
fit = np.linalg.lstsq(A, B, rcond=None)[0]
*gradient, _constant = fit
# we do not need the constant, only the gradient
# gradient is a vector of the amount of the slope in each direction
magnitude = np.linalg.norm(gradient)
if np.isclose(magnitude, 0):
return scale # there is no noticable gradient
# Make it a 2d numpy array and normalise it.
gradient = np.array([gradient], dtype=float) / magnitude
projection_matrix = (gradient.T @ gradient)
identity = np.eye(self.ndim)
factor = math.sqrt(magnitude ** 2 + 1) - 1
scale_along_gradient = projection_matrix * factor + identity
m = np.dot(scale_along_gradient, scale)
return m.T
def _simplex_exists(self, simplex):
simplex = tuple(sorted(simplex))
return simplex in self.tri.simplices
def inside_bounds(self, point):
return all(mn <= p <= mx for p, (mn, mx) in zip(point, self.bounds))
def inside_bounds(self, point, eps = 1e-8):
return all((mn - eps) <= p <= (mx + eps) for p, (mn, mx) in zip(point, self.bounds))
def tell_pending(self, point, *, simplex=None):
point = tuple(point)
@@ -384,8 +433,8 @@ class LearnerND(BaseLearner):
subtri = self._subtriangulations[simplex]
points = subtri.get_vertices(subsimplex)
point_new = tuple(choose_point_in_simplex(points,
transform=self._transform))
transform = self.get_local_transform_matrix(simplex)
point_new = tuple(choose_point_in_simplex(points, transform=transform))
self._pending_to_simplex[point_new] = simplex
self.tell_pending(point_new, simplex=simplex) # O(??)
@@ -543,7 +592,7 @@ class LearnerND(BaseLearner):
p = hv.Path((x, y))
# Plot with 5% margins such that the boundary points are visible
margin = 0.05 / self._transform[ind, ind]
margin = 0.05 / self._scale_matrix[ind, ind]
plot_bounds = (x.min() - margin, x.max() + margin)
return p.redim(x=dict(range=plot_bounds))
Loading