Newer
Older
# Self-consistent mean field algorithm
## Mean-field approximation
The full hamiltonian is:
$$
\hat{H} = \hat{H_0} + \hat{V} = \sum_{ij} h_{ij} c^\dagger_{i} c_{j} + \frac{1}{2} \sum_{ijkl} v_{ijkl} c_i^\dagger c_j^\dagger c_l c_k
$$
We assume the dominant part of the ground state wavefunction comes from $\hat{H}_0$. Let's assume $b_i$ operators diagonalize the unperturbed hamiltonian:
$$
c_i^\dagger = \sum_{k} U_{ik} b_k^\dagger,
$$
such that the unperturbed groundstate wavefunction is:
$$
| 0 \rangle = \Pi_{E_i \leq \mu } b_i^\dagger |\textrm{vac}\rangle.
$$
Based on this definition, we define the normal ordering operator $:ABC...:$ such that it fulfills:
$$
:ABC...: | 0 \rangle = 0
$$
which practically means it orders $b_i$ operators based on whether its above or below the Fermi level $\mu$.
Under this definition of normal ordering, we define the Wick's expansion of the interaction term:
$$
\begin{multline}
c_i^\dagger c_j^\dagger c_l c_k = :c_i^\dagger c_j^\dagger c_l c_k: \\+ \overline{c_i^\dagger c_j^\dagger} :c_l c_k: + \overline{c_i^\dagger c_k} :c_j^\dagger c_l: - \overline{c_i^\dagger c_l} :c_j^\dagger c_k: + \overline{c_l c_k} :c_i^\dagger c_j^\dagger: - \overline{c_j^\dagger c_k} :c_i^\dagger c_l: + \overline{c_j^\dagger c_l} :c_i^\dagger c_k: \\
\overline{c_i^\dagger c_j^\dagger} \overline{c_l c_k} - \overline{c_i^\dagger c_l} \overline{c_j^\dagger c_k} + \overline{c_i^\dagger c_k} \overline{c_j^\dagger c_l}
\end{multline}
$$
where the overline defines Wick's contraction:
$$
\overline{AB} = AB - :AB:.
$$
The expectation value of the interaction with respect to the $| 0 \rangle$ is:
$$
\langle 0 | c_i^\dagger c_j^\dagger c_l c_k | 0 \rangle = \langle 0 | \overline{c_i^\dagger c_j^\dagger} \overline{c_l c_k} - \overline{c_i^\dagger c_l} \overline{c_j^\dagger c_k} + \overline{c_i^\dagger c_k} \overline{c_j^\dagger c_l} | 0 \rangle
$$
where we can forget about all the normal ordered states since those give zero acting on the unperturbed groundstate. To evaluate this further, we utilize the mean-field approximation:
$$
A B \approx \langle A \rangle B + A \langle B \rangle - \langle A \rangle \langle B \rangle
$$
onto the contractions such that we get:
$$
\langle c_i^\dagger c_j^\dagger c_l c_k \rangle \approx \langle c_i^\dagger c_j^\dagger \rangle \langle c_l c_k \rangle + \langle c_i^\dagger c_k \rangle \langle c_j^\dagger c_l \rangle - \langle c_i^\dagger c_l \rangle \langle c_j^\dagger c_k \rangle
note $\langle A B \rangle \approx \langle A \rangle \langle B \rangle$ assuming mean-field.
To consider excitations from the groundstate, we make use of the mean-field approximation defined above:
$$
\begin{multline}
c_i^\dagger c_j^\dagger c_l c_k \approx \\
\langle c_i^\dagger c_j^\dagger \rangle c_l c_k + \langle c_i^\dagger c_k \rangle c_j^\dagger c_l - \langle c_i^\dagger c_l \rangle c_j^\dagger c_k + \langle c_l c_k \rangle c_i^\dagger c_j^\dagger - \langle c_j^\dagger c_k \rangle c_i^\dagger c_l + \langle c_j^\dagger c_l \rangle c_i^\dagger c_k + \\
\langle c_i^\dagger c_j^\dagger \rangle \langle c_l c_k \rangle + \langle c_i^\dagger c_k \rangle \langle c_j^\dagger c_l \rangle - \langle c_i^\dagger c_l \rangle \langle c_j^\dagger c_k \rangle
\end{multline}
$$
Where we made use of the following operations:
$$
:c_i^\dagger c_j^\dagger c_l c_k: \approx 0
$$
$$
\overline{c_i^\dagger c_k} \overline{c_j^\dagger c_l} \approx \langle \overline{c_i^\dagger c_k} \rangle \overline{c_j^\dagger c_l} + \overline{c_i^\dagger c_k} \langle \overline{c_j^\dagger c_l} \rangle - \langle \overline{c_i^\dagger c_k} \rangle \langle \overline{c_j^\dagger c_i} \rangle = \langle c_i^\dagger c_k \rangle \overline{c_j^\dagger c_l} + \overline{c_i^\dagger c_k} \langle c_j^\dagger c_l \rangle - \langle c_i^\dagger c_k \rangle \langle c_j^\dagger c_l \rangle
\overline{c_i^\dagger c_k} :c_j^\dagger c_l: \approx \langle \overline{c_i^\dagger c_k} \rangle :c_j^\dagger c_l: + \overline{c_i^\dagger c_k} \langle :c_j^\dagger c_l: \rangle - \langle \overline{c_i^\dagger c_k} \rangle \langle :c_j^\dagger c_l: \rangle = \langle \overline{c_i^\dagger c_k} \rangle :c_j^\dagger c_l:
$$
$$
\langle \overline{c_i^\dagger c_k} \rangle = \langle c_i^\dagger c_k - :c_i^\dagger c_k: \rangle = \langle c_i^\dagger c_k \rangle
$$
Without any superconducting terms, the form simplifies to:
$$
\begin{multline}
c_i^\dagger c_j^\dagger c_l c_k \approx
\langle c_i^\dagger c_k \rangle c_j^\dagger c_l - \langle c_i^\dagger c_l \rangle c_j^\dagger c_k - \langle c_j^\dagger c_k \rangle c_i^\dagger c_l + \langle c_j^\dagger c_l \rangle c_i^\dagger c_k + \\
\langle c_i^\dagger c_k \rangle \langle c_j^\dagger c_l \rangle - \langle c_i^\dagger c_l \rangle \langle c_j^\dagger c_k \rangle
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
\end{multline}
$$
## Finite size
### Coulomb interaction
We simplify the interaction term through the MF approximation to get:
$$
V = \frac{1}{2}\sum_{ijkl} v_{ijkl} c_i^{\dagger} c_j^{\dagger} c_l c_k
\approx
\frac12 \sum_{ijkl} v_{ijkl} \left[ \langle c_i^{\dagger} c_k \rangle c_j^{\dagger} c_l - \langle c_j^{\dagger} c_k \rangle c_i^{\dagger} c_l - \langle c_i^{\dagger} c_l \rangle c_j^{\dagger} c_k + \langle c_j^{\dagger} c_l \rangle c_i^{\dagger} c_k \right]
$$
(assuming no superconductivity)
and an additional constant part:
$$
V_0 = \frac{1}{2} \sum_{ijkl} v_{ijkl} \left(\langle c_j^{\dagger} c_l \rangle \langle c_i^{\dagger} c_k \rangle - \langle c_j^{\dagger} c_k \rangle \langle c_i^{\dagger} c_l \rangle \right).
$$
The interaction reads:
$$
v_{ijkl} = \iint w_{i}^*(r) w_{j}^*(r') V(r, r') w_{k}(r) w_l(r') dr dr' = \\
\iint V(|r - r'|) w_{i}^*(r)w_{k}(r) w_{j}^*(r') w_l(r') dr dr'
$$
whereas $w_i$ is a wannier function on site i (and corresponding dof). Whenever one interchanges $i \to j, k \to l$, the Coulomb term is preserved $v_{ijkl} = v_{jilk}$
To make things more understandable, we are also going to explicitly split up position and spin indices: $i \to i \times \sigma$. In this notation, the Coulomb integral reads:
$$
v_{ijkl}^{\sigma_i \sigma_j \sigma_k \sigma_l} =
\iint V(|r - r'|) w_{i\times\sigma_i}^{*} (r)w_{k \times \sigma_k}(r) w_{j \times \sigma_j}^{*}(r') w_{l\times \sigma_l}(r') dr dr' \delta_{\sigma_i \sigma_k} \delta_{\sigma_{j} \sigma_l}
$$
On a fine tight-binding model, we have:
$$
v_{ijkl}^{\sigma_i \sigma_j \sigma_k \sigma_l} = v_{ij} \delta_{ik} \delta_{jl} \delta_{\sigma_i \sigma_k} \delta_{\sigma_j \sigma_l}
$$
where $v_{ij} = V(r_i, r_j)$.
We shall re-define $i$ index to absorb spin:
$$
\delta_{ik} \times \delta_{\sigma_{i} \sigma_{k}} \to \delta_{ik}
$$
in this notation the above reads:
$$
v_{ijkl} = v_{ij} \delta_{ik} \delta_{jl}
$$
The mean-field terms are:
$$
\langle c_i^{\dagger} c_j\rangle = \langle \Psi_F|c_i^{\dagger} c_j | \Psi_F \rangle
$$
whereas $|\Psi_F \rangle = \Pi_{i=0}^{N_F} b_i^\dagger |0\rangle$. To make sense of things, we need to transform between $c_i$ basis (position + internal dof basis) into the $b_i$ basis (eigenfunction of a given mean-field Hamiltonian):
$$
c_i^\dagger = \sum_{k} U_{ik} b_k^\dagger
$$
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
$$
U_{ik} = \langle{i|\psi_k} \rangle.
$$
That gives us:
$$
c_i^{\dagger} c_j = \sum_{k, l} U_{ik} U_{lj}^* b_k^\dagger b_{l}
$$
and its expectation value gives us the mean-field ... field $F_{ij}$:
$$
F_{ij} = \langle c_i^{\dagger} c_j\rangle = \sum_{k, l} U_{ik} U_{lj}^* \langle \Psi_F| b_k^\dagger b_{l}| \Psi_F \rangle = \sum_{k} U_{ik} U_{kj}^{*}
$$
whereas I assumed the indices for wavefunctions $k,l$ are ordered in terms of increasing eigenvalue. We pop that into the definition of the mean-field correction $V$:
$$
\begin{multline}
V_{nm} = \frac12 \sum_{ijkl} v_{ijkl} \langle n| \left[ \langle c_i^{\dagger} c_k \rangle c_j^{\dagger} c_l - \langle c_j^{\dagger} c_k \rangle c_i^{\dagger} c_l - \langle c_i^{\dagger} c_l \rangle c_j^{\dagger} c_k + \langle c_j^{\dagger} c_l \rangle c_i^{\dagger} c_k \right] |m\rangle = \\
\frac12 \sum_{ijkl} v_{ijkl} \left[ +\delta_{jn}\delta_{lm} F_{ik} -\delta_{in}\delta_{lm} F_{jk} -\delta_{jn}\delta_{km} F_{il} + \delta_{in}\delta_{km} F_{jl} \right] = \\
\frac12 \left[ \sum_{ik} v_{inkm} F_{ik} - \sum_{jk} v_{njkm} F_{jk} - \sum_{il} v_{inml} F_{il} + \sum_{jl} v_{njml} F_{jl} \right] = \\
-\sum_{ij} F_{ij} \left(v_{inmj} - v_{injm} \right)
\end{multline}
$$
where I used the $v_{ijkl} = v_{jilk}$ symmetry from Coulomb.
For a tight-binding grid, the mean-field correction simplifies to:
$$
\begin{multline}
V_{nm} = - \sum_{ij} F_{ij} \left(v_{inmj} - v_{injm} \right) = \\
-\sum_{ij}F_{ij} v_{in} \delta_{im} \delta_{nj} + \sum_{ij}F_{ij} v_{in} \delta_{ij} \delta_{nm} = \\
-F_{mn} v_{mn} + \sum_{i} F_{ii} v_{in} \delta_{nm}
\end{multline}
$$
the first term is the exchange interaction whereas the second one is the direct interaction.
Similarly, the constant offset term reads:
$$
\begin{multline}
V_0 = \frac{1}{2} \sum_{ijkl} v_{ijkl} \left(F_{jl} F_{ik} - F_{jk} F_{il} \right) = \\
\frac{1}{2} \sum_{ijkl} v_{ij} \delta_{ik} \delta_{jl} \left(F_{jl} F_{ik} - F_{jk} F_{il}\right) \\
= \frac{1}{2} \sum_{ij} v_{ij} \left(F_{ii} F_{jj} - F_{ji} F_{ij}\right)
\end{multline}
$$
where we identify the first term as the exchange (mixes indices) and the right one as the direct (diagonal in indices).
## Translational Invariance
The above assumed a finite tight-binding model - all $nm$-indices contain the position of all atoms (among other dof). In this section tho we want to consider an infinite system with translational invariance.
To begin with we deconstruct a general matrix $O_{nm}$ into the cell degrees of freedom ($nm$) and the position of the the cell itself ($ij$):
$$
O_{nm} \to O^{ij}_{nm}
$$
and we will Fourier transform the upper indices into k-space:
$$
O_{mn}(k) = \sum_{ij} O_{nm}^{ij} e^{-i k (R_i-R_j)}
$$
where I assumed $O$ (and thus all operators I will consider here) is local and thus diagonal in k-space.
Now lets rewrite our main result in the previous section using our new notation:
$$
V_{nm}^{ij} =-F_{mn}^{ij} v_{mn}^{ij} + \sum_{r,p} F_{pp}^{rr} v_{pn}^{rj} \delta_{nm} \delta^{ij}
$$
Lets first consider the second (direct) term. Lets express the corresponding $F$ term in k-space:
$$
F_{pp}^{rr} = \int e^{i k (R_r-R_r)} F_{pp}(k) dk = \int F_{pp}(k) dk
$$
Notice that in the final expression, there is no $rr$ dependence and thus this term is cell-periodic. Therefore, we shall redefine it as cell electron density $\rho$:
$$
F_{pp}^0 = F_{pp}(R = 0) = \int F_{pp}(k) dk
$$
Now since $\rho$ has no $r$ dependence, we can proceed with the sum:
$$
\sum_{r} v_{pn}^{rj} = \int v_{pn}(k) e^{ik R_j} \sum_{r} e^{-i k R_r} dk = \int v_{pn}(k) e^{ik R_j} \delta_{k, 0} dk = v_{pn}(0)
$$
We are finally ready to Fourier transform the main result. Invoking convolution theorem and the results above gives us:
$$
V_{nm}(k) = \sum_{p} F_{pp}^0 v_{pn}(0) \delta_{nm} -F_{mn}(k) \circledast v_{mn}(k) = V_n^D - F_{mn}(k) \circledast v_{mn}(k)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
$$
which does make sense. The first term (direct) is a potential term coming from the mean-field and the second term (exchange) is purely responsible for the hopping.
The constant offset is:
$$
V_0 = \frac{1}{2} \sum_{r,s} \rho_r v_{rs}(0) \rho_s- \\ \frac{1}{2} tr\left[\int_{BZ} \left(F \circledast v\right)(k) F(k) dk \right]
$$
## Short-Range interactions
In the case of short-range interactions, it is much more convenient to go back to real space to both store objects and perform the operations. In real space the mean-field part of the Hamiltonian reads:
$$
V_{nm}(\mathbf{R}) = V_n^D \delta(\mathbf{R}) - F_{mn}(\mathbf{R}) v_{mn}(\mathbf{R})
$$
(the first term might need some prefactor from Fourier transformation)
where $\mathbf{R}$ is a sequence of integers representing real-space unit cell indices.
### Proposed Algorithm
Given an initial Hamiltonian $H_0 (R)$ and the interaction term $v(R)$ in real-space, the mean-field algorithm is the following:
0. Start with a mean-field guess in real-space: $V(R)$.
1. Fourier transform tight-binding model and the mean-field in real space to a given k-grid: $H_0(R) + V(R) \to H_0(k) + V(k)$
2. Diagonalize and evaluate the density matrix: $H_0(k) + V(k) \to F(k)$
3. Fourier transform the density matrix back to real-space: $F(k) \to F(R)$
4. Evaluate the new mean-field Hamiltonian $V(R)$ according to the equation above.
5. Evaluate self-consistency metric (could be based either on $V(R/k)$ or $F(R/k)$). Based on that, either stop or go back to 1 with a modified $V(R)$ starting guess.