-
Johanna Zijderveld authoredJohanna Zijderveld authored
transforms.py 6.04 KiB
import numpy as np
from scipy.fftpack import ifftn
import itertools as it
def tb_to_khamvector(h_0, nk, ndim):
"""
Real-space tight-binding model to hamiltonian on k-space grid.
Parameters
----------
h_0 : dict
A dictionary with real-space vectors as keys and complex np.arrays as values.
nk : int
Number of k-points along each direction.
ndim : int
Number of dimensions.
Returns
-------
ndarray
Hamiltonian evaluated on a k-point grid.
"""
ks = np.linspace(-np.pi, np.pi, nk, endpoint=False)
ks = np.concatenate((ks[nk // 2 :], ks[: nk // 2]), axis=0) # shift for ifft
kgrid = np.meshgrid(ks, ks, indexing="ij")
num_keys = len(list(h_0.keys()))
tb_array = np.array(list(h_0.values()))
keys = np.array(list(h_0.keys()))
k_dependency = np.exp(-1j * np.tensordot(keys, kgrid, 1))[
(...,) + (np.newaxis,) * 2
]
tb_array = tb_array.reshape(
np.concatenate(([num_keys], [1] * ndim, tb_array.shape[1:]))
)
return np.sum(tb_array * k_dependency, axis=0)
def tb_to_kfunc(h_0):
"""
Fourier transforms a real-space tight-binding model to a k-space function.
Parameters
----------
h_0 : dict
A dictionary with real-space vectors as keys and complex np.arrays as values.
Returns
-------
function
A function that takes a k-space vector and returns a complex np.array.
"""
def bloch_ham(k):
ham = 0
for vector in h_0.keys():
ham += h_0[vector] * np.exp(-1j * np.dot(k, np.array(vector, dtype=float)))
return ham
return bloch_ham
def ifftn_to_tb(ifft_array):
"""
Converts an array from ifftn to a tight-binding model format.
Parameters
----------
ifft_array : ndarray
An array obtained from ifftn.
Returns
-------
dict
A dictionary with real-space vectors as keys and complex np.arrays as values.
"""
size = ifft_array.shape[:-2]
keys = [np.arange(-size[0] // 2 + 1, size[0] // 2) for i in range(len(size))]
keys = it.product(*keys)
return {tuple(k): ifft_array[tuple(k)] for k in keys}
def kfunc_to_kham(nk, hk, dim, return_ks=False, hermitian=True):
"""
Evaluates Hamiltonian on a k-point grid.
Paramters:
----------
nk : int
Number of k-points along each direction.
hk : function
Calculates the Hamiltonian at a given k-point.
return_ks : bool
If `True`, returns k-points.
Returns:
--------
ham : nd.array
Hamiltonian evaluated on a k-point grid from k-points
along each direction evaluated from zero to 2*pi.
The indices are ordered as [k_1, ... , k_n, i, j], where
`k_m` corresponding to the k-point element along each
direction and `i` and `j` are the internal degrees of freedom.
ks : 1D-array
List of k-points over all directions. Only returned if `return_ks=True`.
"""
ks = np.linspace(
-np.pi, np.pi, nk, endpoint=False
) # for now nk need to be even such that 0 is in the middle
ks = np.concatenate((ks[nk // 2 :], ks[: nk // 2]), axis=0) # shift for ifft
k_pts = np.tile(ks, dim).reshape(dim, nk)
ham = []
for k in it.product(*k_pts):
ham.append(hk(k))
ham = np.array(ham)
if hermitian:
assert np.allclose(
ham, np.transpose(ham, (0, 2, 1)).conj()
), "Tight-binding provided is non-Hermitian. Not supported yet"
shape = (*[nk] * dim, ham.shape[-1], ham.shape[-1])
if return_ks:
return ham.reshape(*shape), ks
else:
return ham.reshape(*shape)
def tb_to_kham(h_0, nk=200, ndim=1):
kfunc = tb_to_kfunc(h_0)
kham = kfunc_to_kham(nk, kfunc, ndim)
return kham
def kfunc_to_tb(kfunc, n_samples, ndim=1):
"""
Applies FFT on a k-space function to obtain a real-space components.
Parameters
----------
kfunc : function
A function that takes a k-space vector and returns a np.array.
n_samples : int
Number of samples to take in k-space.
Returns
-------
dict
A dictionary with real-space vectors as keys and complex np.arrays as values.
"""
ks = np.linspace(
-np.pi, np.pi, n_samples, endpoint=False
) # for now n_samples need to be even such that 0 is in the middle
ks = np.concatenate(
(ks[n_samples // 2 :], ks[: n_samples // 2]), axis=0
) # shift for ifft
if ndim == 1:
kfunc_on_grid = np.array([kfunc(k) for k in ks])
if ndim == 2:
kfunc_on_grid = np.array([[kfunc((kx, ky)) for ky in ks] for kx in ks])
if ndim > 2:
raise NotImplementedError("n > 2 not implemented")
ifftn_array = ifftn(kfunc_on_grid, axes=np.arange(ndim))
return ifftn_to_tb(ifftn_array)
def hk_to_h0(hk, hopping_vecs, ks=None):
"""
Extract hopping matrices from Bloch Hamiltonian.
Parameters:
-----------
hk : nd-array
Bloch Hamiltonian matrix hk[k_x, ..., k_n, i, j]
h_0 : dict
Tight-binding model of non-interacting systems.
h_int : dict
Tight-binding model for interacting Hamiltonian.
ks : 1D-array
Set of k-points. Repeated for all directions. If the system is finite, `ks=None`.
Returns:
--------
scf_model : dict
TIght-binding model of Hartree-Fock solution.
"""
if ks is not None:
ndim = len(hk.shape) - 2
dk = np.diff(ks)[0]
nk = len(ks)
k_pts = np.tile(ks, ndim).reshape(ndim, nk)
k_grid = np.array(np.meshgrid(*k_pts))
k_grid = k_grid.reshape(k_grid.shape[0], np.prod(k_grid.shape[1:]))
hk = hk.reshape(np.prod(hk.shape[:ndim]), *hk.shape[-2:])
hopps = (
np.einsum(
"ij,jkl->ikl",
np.exp(1j * np.einsum("ij,jk->ik", hopping_vecs, k_grid)),
hk,
)
* (dk / (2 * np.pi)) ** ndim
)
h_0 = {}
for i, vector in enumerate(hopping_vecs):
h_0[tuple(vector)] = hopps[i]
return h_0
else:
return {(): hk}