Skip to content
Snippets Groups Projects
Commit 17b8462a authored by Antonio Manesco's avatar Antonio Manesco
Browse files

Merge branch 'remove_kwant_dependencies' into 'main'

Remove kwant dependencies

See merge request qt/kwant-scf!2
parents 7e5c4e25 4d644c6b
No related branches found
No related tags found
1 merge request!2Remove kwant dependencies
File added
This diff is collapsed.
# %%
import numpy as np import numpy as np
import kwant import kwant
from itertools import product
# %%
def get_fermi_energy(vals, filling): def get_fermi_energy(vals, filling):
norbs = vals.shape[-1] norbs = vals.shape[-1]
vals_flat = np.sort(vals.flatten()) vals_flat = np.sort(vals.flatten())
...@@ -14,12 +18,26 @@ def get_fermi_energy(vals, filling): ...@@ -14,12 +18,26 @@ def get_fermi_energy(vals, filling):
fermi = (vals_flat[ifermi - 1] + vals_flat[ifermi]) / 2 fermi = (vals_flat[ifermi - 1] + vals_flat[ifermi]) / 2
return fermi return fermi
def syst2hamiltonian(kxs, kys, syst, params={}):
def h_k(kx, ky): def syst2hamiltonian(ks, syst, params={}, coordinate_names='xyz'):
return syst.hamiltonian_submatrix(params={**params, **dict(k_x=kx, k_y=ky)}) momenta = ['k_{}'.format(coordinate_names[i])
return np.array( for i in range(len(syst._wrapped_symmetry.periods))]
[[h_k(kx, ky) for kx in kxs] for ky in kys]
) def h_k(k):
_k_dict = {}
for i, k_n in enumerate(momenta):
_k_dict[k_n] = k[i]
return syst.hamiltonian_submatrix(params={**params, **_k_dict})
k_pts = np.tile(ks, len(momenta)).reshape(len(momenta),len(ks))
ham = []
for k in product(*k_pts):
ham.append(h_k(k))
ham = np.array(ham)
shape = (*np.repeat(k_pts.shape[1], k_pts.shape[0]), ham.shape[-1], ham.shape[-1])
return ham.reshape(*shape)
def potential2hamiltonian( def potential2hamiltonian(
syst, lattice, func_onsite, func_hop, ks, params={}, max_neighbor=1 syst, lattice, func_onsite, func_hop, ks, params={}, max_neighbor=1
...@@ -29,33 +47,67 @@ def potential2hamiltonian( ...@@ -29,33 +47,67 @@ def potential2hamiltonian(
for neighbors in range(max_neighbor): for neighbors in range(max_neighbor):
V[lattice.neighbors(neighbors + 1)] = func_hop V[lattice.neighbors(neighbors + 1)] = func_hop
wrapped_V = kwant.wraparound.wraparound(V).finalized() wrapped_V = kwant.wraparound.wraparound(V).finalized()
return syst2hamiltonian(kxs=ks, kys=ks, syst=wrapped_V, params=params) return syst2hamiltonian(ks=ks, syst=wrapped_V, params=params)
def generate_guess(max_neighbor, norbs, lattice, kxs, kys, dummy_syst):
n_sub = len(lattice.sublattices) def assign_kdependence(
guess = np.zeros((n_sub + max_neighbor, 2, norbs, norbs)) nk, dim, ndof, hopping_vecs, content
for i in range(n_sub): ): # goal and content are bad names, suggestions welcome
# Real part klenlist = [nk for i in range(dim)]
guess[i, 0] = np.random.rand(norbs, norbs) - 0.5 goal = np.zeros((klenlist + [ndof, ndof]), dtype=complex)
guess[i, 0] += guess[i, 0].T reshape_order = [1 for i in range(dim)] # could use a better name
# Imag part kgrid = (
guess[i, 1] = np.random.rand(norbs, norbs) - 0.5 np.asarray(np.meshgrid(*[np.linspace(-np.pi, np.pi, nk) for i in range(dim)]))
guess[i, 1] -= guess[i, 1].T .reshape(dim, -1)
for neighbor in range(max_neighbor): .T
# Real part
guess[n_sub + neighbor, 0] = np.random.rand(norbs, norbs) - 0.5
# Imag part
guess[n_sub + neighbor, 1] = np.random.rand(norbs, norbs) - 0.5
guess_k = syst2hamiltonian(
kxs=kxs, kys=kys, syst=dummy_syst, params=dict(mat=guess)
) )
return guess_k
for hop, hop2 in zip(hopping_vecs, content):
k_dependence = np.exp(1j * np.dot(kgrid, hop)).reshape(klenlist + [1, 1])
goal += hop2.reshape(reshape_order + [ndof, ndof]) * k_dependence
return goal
def generate_guess(nk, dim, hopping_vecs, ndof, scale=0.1):
"""
nk : int
number of k points
dim : int
dimension of the system
hopping_vecs : np.array
hopping vectors as obtained from extract_hopping_vectors
ndof : int
number of degrees of freedom
scale : float
scale of the guess. If scale=1 then the guess is random around 0.5
Smaller values of the guess significantly slows down convergence but
does improve the result at phase instability points.
Notes:
-----
Assumes that the desired max nearest neighbour distance is included in the hopping_vecs information.
Creates a square grid by definition, might still want to change that
"""
all_rand_hermitians = []
for n in hopping_vecs:
amplitude = np.random.rand(ndof, ndof)
phase = 2 * np.pi * np.random.rand(ndof, ndof)
rand_hermitian = amplitude * np.exp(1j * phase)
rand_hermitian += rand_hermitian.T.conj()
rand_hermitian /= 2
all_rand_hermitians.append(rand_hermitian)
all_rand_hermitians = np.asarray(all_rand_hermitians)
guess = assign_kdependence(nk, dim, ndof, hopping_vecs, all_rand_hermitians)
return guess * scale
def extract_hopping_vectors(builder): def extract_hopping_vectors(builder):
keep=None keep = None
deltas=[] deltas = []
for hop, val in builder.hopping_value_pairs(): for hop, val in builder.hopping_value_pairs():
a, b=hop a, b = hop
b_dom = builder.symmetry.which(b) b_dom = builder.symmetry.which(b)
# Throw away part that is in the remaining translation direction, so we get # Throw away part that is in the remaining translation direction, so we get
# an element of 'sym' which is being wrapped # an element of 'sym' which is being wrapped
...@@ -63,8 +115,10 @@ def extract_hopping_vectors(builder): ...@@ -63,8 +115,10 @@ def extract_hopping_vectors(builder):
deltas.append(b_dom) deltas.append(b_dom)
return np.asarray(deltas) return np.asarray(deltas)
def generate_scf_syst(max_neighbor, syst, lattice): def generate_scf_syst(max_neighbor, syst, lattice):
subs = np.array(lattice.sublattices) subs = np.array(lattice.sublattices)
def scf_onsite(site, mat): def scf_onsite(site, mat):
idx = np.where(subs == site.family)[0][0] idx = np.where(subs == site.family)[0][0]
return mat[idx, 0] + 1j * mat[idx, 1] return mat[idx, 0] + 1j * mat[idx, 1]
...@@ -72,6 +126,7 @@ def generate_scf_syst(max_neighbor, syst, lattice): ...@@ -72,6 +126,7 @@ def generate_scf_syst(max_neighbor, syst, lattice):
scf = kwant.Builder(kwant.TranslationalSymmetry(*lattice.prim_vecs)) scf = kwant.Builder(kwant.TranslationalSymmetry(*lattice.prim_vecs))
scf[syst.sites()] = scf_onsite scf[syst.sites()] = scf_onsite
for neighbor in range(max_neighbor): for neighbor in range(max_neighbor):
def scf_hopping(site1, site2, mat): def scf_hopping(site1, site2, mat):
return ( return (
mat[len(lattice.sublattices) + neighbor, 0] mat[len(lattice.sublattices) + neighbor, 0]
...@@ -83,24 +138,31 @@ def generate_scf_syst(max_neighbor, syst, lattice): ...@@ -83,24 +138,31 @@ def generate_scf_syst(max_neighbor, syst, lattice):
wrapped_scf = kwant.wraparound.wraparound(scf).finalized() wrapped_scf = kwant.wraparound.wraparound(scf).finalized()
return wrapped_scf, deltas return wrapped_scf, deltas
def hk2hop(hk, deltas, ks, dk): def hk2hop(hk, deltas, ks, dk):
kxx, kyy = np.meshgrid(ks, ks) ndim = len(hk.shape) - 2
kxy = np.array([kxx, kyy]) k_pts = np.tile(ks, ndim).reshape(ndim,len(ks))
hopps = ( k_grid = np.array(np.meshgrid(*k_pts))
np.sum( k_grid = k_grid.reshape(k_grid.shape[0], np.prod(k_grid.shape[1:]))
np.einsum( # Can probably flatten this object to make einsum simpler
"ijk,jklm->ijklm", hk = hk.reshape(np.prod(hk.shape[:ndim]), *hk.shape[-2:])
np.exp(1j * np.einsum("ij,jkl->ikl", deltas, kxy)),
hk, hopps = np.einsum(
), "ij,jkl->ikl",
axis=(1, 2), np.exp(1j * np.einsum("ij,jk->ik", deltas, k_grid)),
) hk,
* (dk) ** 2 ) * (dk / (2 * np.pi)) ** ndim
/ (2 * np.pi) ** 2
)
return hopps return hopps
def hktohamiltonian(hk, nk, ks, dk, dim, hopping_vecs, ndof):
"""function is basically tiny so maybe don't separapetly create it"""
hops = hk2hop(hk, hopping_vecs, ks, dk)
hamil = assign_kdependence(nk, dim, ndof, hopping_vecs, hops)
return hamil
def hk2syst(deltas, hk, ks, dk, max_neighbor, norbs, lattice): def hk2syst(deltas, hk, ks, dk, max_neighbor, norbs, lattice):
hopps = hk2hop(hk, deltas, ks, dk) hopps = hk2hop(hk, deltas, ks, dk)
bulk_scf = kwant.Builder(kwant.TranslationalSymmetry(*lattice.prim_vecs)) bulk_scf = kwant.Builder(kwant.TranslationalSymmetry(*lattice.prim_vecs))
...@@ -125,7 +187,8 @@ def hk2syst(deltas, hk, ks, dk, max_neighbor, norbs, lattice): ...@@ -125,7 +187,8 @@ def hk2syst(deltas, hk, ks, dk, max_neighbor, norbs, lattice):
wrapped_scf_syst = kwant.wraparound.wraparound(bulk_scf).finalized() wrapped_scf_syst = kwant.wraparound.wraparound(bulk_scf).finalized()
return wrapped_scf_syst return wrapped_scf_syst
def calc_gap(vals, E_F): def calc_gap(vals, E_F):
emax = np.max(vals[vals <= E_F]) emax = np.max(vals[vals <= E_F])
emin = np.min(vals[vals > E_F]) emin = np.min(vals[vals > E_F])
return np.abs(emin - emax) return np.abs(emin - emax)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment