Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
MeanFi
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Quantum Tinkerer
MeanFi
Commits
3a22cd6d
Commit
3a22cd6d
authored
11 months ago
by
Johanna Zijderveld
Browse files
Options
Downloads
Patches
Plain Diff
remove old functions and remove kvector ending on new functions
parent
5dd77a62
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!4
Interface refactoring
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
codes/mf.py
+8
-88
8 additions, 88 deletions
codes/mf.py
codes/model.py
+8
-29
8 additions, 29 deletions
codes/model.py
codes/solvers.py
+1
-59
1 addition, 59 deletions
codes/solvers.py
codes/test_graphene.py
+2
-4
2 additions, 4 deletions
codes/test_graphene.py
with
19 additions
and
180 deletions
codes/mf.py
+
8
−
88
View file @
3a22cd6d
...
...
@@ -2,36 +2,6 @@ import numpy as np
from
codes.tb.tb
import
addTb
def
densityMatrixGenerator
(
hkfunc
,
E_F
):
"""
Generate a function that returns the density matrix at a given k-point.
Parameters
----------
hkfunc : function
Function that return Hamiltonian at a given k-point.
E_F : float
Fermi level
Returns
-------
densityMatrixFunc : function
Returns a density matrix at a given k-point (kx, kx, ...)
"""
def
densityMatrixFunc
(
k
):
hk
=
hkfunc
(
k
)
vals
,
vecs
=
np
.
linalg
.
eigh
(
hk
)
unocc_vals
=
vals
>
E_F
occ_vecs
=
vecs
occ_vecs
[:,
unocc_vals
]
=
0
# Outter products between eigenvectors
return
occ_vecs
@
occ_vecs
.
T
.
conj
()
return
densityMatrixFunc
def
densityMatrix
(
kham
,
E_F
):
"""
Parameters
...
...
@@ -56,24 +26,7 @@ def densityMatrix(kham, E_F):
return
densityMatrixKgrid
def
fermiOnGridkvector
(
kham
,
filling
):
vals
=
np
.
linalg
.
eigvalsh
(
kham
)
norbs
=
vals
.
shape
[
-
1
]
vals_flat
=
np
.
sort
(
vals
.
flatten
())
ne
=
len
(
vals_flat
)
ifermi
=
int
(
round
(
ne
*
filling
/
norbs
))
if
ifermi
>=
ne
:
return
vals_flat
[
-
1
]
elif
ifermi
==
0
:
return
vals_flat
[
0
]
else
:
fermi
=
(
vals_flat
[
ifermi
-
1
]
+
vals_flat
[
ifermi
])
/
2
return
fermi
def
fermiOnGrid
(
hkfunc
,
filling
,
nK
=
100
,
ndim
=
1
):
# need to extend to 2D
def
fermiOnGrid
(
kham
,
filling
):
"""
Compute the Fermi energy on a grid of k-points.
...
...
@@ -88,17 +41,8 @@ def fermiOnGrid(hkfunc, filling, nK=100, ndim=1): # need to extend to 2D
E_F : float
Fermi energy
"""
ks
=
np
.
linspace
(
-
np
.
pi
,
np
.
pi
,
nK
,
endpoint
=
False
)
if
ndim
==
1
:
hkarray
=
np
.
array
([
hkfunc
(
k
)
for
k
in
ks
])
if
ndim
==
2
:
hkarray
=
np
.
array
([[
hkfunc
((
kx
,
ky
))
for
kx
in
ks
]
for
ky
in
ks
])
elif
ndim
>
2
:
raise
NotImplementedError
(
"
Fermi energy calculation is not implemented for ndim > 2
"
)
vals
=
np
.
linalg
.
eigvalsh
(
hkarray
)
vals
=
np
.
linalg
.
eigvalsh
(
kham
)
norbs
=
vals
.
shape
[
-
1
]
vals_flat
=
np
.
sort
(
vals
.
flatten
())
...
...
@@ -113,32 +57,7 @@ def fermiOnGrid(hkfunc, filling, nK=100, ndim=1): # need to extend to 2D
return
fermi
def
meanFieldFFTkvector
(
densityMatrixTb
,
h_int
,
n
=
2
):
localKey
=
tuple
(
np
.
zeros
((
n
,),
dtype
=
int
))
direct
=
{
localKey
:
np
.
sum
(
np
.
array
(
[
np
.
diag
(
np
.
einsum
(
"
pp,pn->n
"
,
densityMatrixTb
[
localKey
],
h_int
[
vec
])
)
for
vec
in
frozenset
(
h_int
)
]
),
axis
=
0
,
)
}
exchange
=
{
vec
:
-
1
*
h_int
.
get
(
vec
,
0
)
*
densityMatrixTb
[
vec
]
# / (2 * np.pi)#**2
for
vec
in
frozenset
(
h_int
)
}
return
addTb
(
direct
,
exchange
)
def
meanField
(
densityMatrix
,
int_model
,
n
=
2
,
nK
=
100
):
def
meanField
(
densityMatrixTb
,
h_int
,
n
=
2
):
"""
Compute the mean-field in k-space.
...
...
@@ -154,6 +73,7 @@ def meanField(densityMatrix, int_model, n=2, nK=100):
dict
Mean-field tb model.
"""
localKey
=
tuple
(
np
.
zeros
((
n
,),
dtype
=
int
))
direct
=
{
...
...
@@ -161,9 +81,9 @@ def meanField(densityMatrix, int_model, n=2, nK=100):
np
.
array
(
[
np
.
diag
(
np
.
einsum
(
"
pp,pn->n
"
,
densityMatrix
[
localKey
],
int
_model
[
vec
])
np
.
einsum
(
"
pp,pn->n
"
,
densityMatrix
Tb
[
localKey
],
h_
int
[
vec
])
)
for
vec
in
frozenset
(
int
_model
)
for
vec
in
frozenset
(
h_
int
)
]
),
axis
=
0
,
...
...
@@ -171,7 +91,7 @@ def meanField(densityMatrix, int_model, n=2, nK=100):
}
exchange
=
{
vec
:
-
1
*
int
_model
.
get
(
vec
,
0
)
*
densityMatrix
[
vec
]
# / (2 * np.pi)#**2
for
vec
in
frozenset
(
int
_model
)
vec
:
-
1
*
h_
int
.
get
(
vec
,
0
)
*
densityMatrix
Tb
[
vec
]
# / (2 * np.pi)#**2
for
vec
in
frozenset
(
h_
int
)
}
return
addTb
(
direct
,
exchange
)
This diff is collapsed.
Click to expand it.
codes/model.py
+
8
−
29
View file @
3a22cd6d
# %%
from
codes.tb.tb
import
addTb
from
codes.tb.transforms
import
tb2kfunc
,
tb2kham
,
kdens2tbFFT
,
kfunc2tb
,
ifftn2tb
from
codes.tb.transforms
import
tb2kham
,
kdens2tbFFT
,
ifftn2tb
from
codes.mf
import
(
densityMatrixGenerator
,
densityMatrix
,
fermiOnGridkvector
,
meanFieldFFTkvector
,
meanField
,
fermiOnGrid
,
meanField
,
)
import
numpy
as
np
...
...
@@ -34,37 +31,19 @@ class Model:
_check_hermiticity
(
h_0
)
_check_hermiticity
(
h_int
)
def
calculateEF
(
self
,
nK
=
200
):
self
.
EF
=
fermiOnGrid
(
self
.
hkfunc
,
self
.
filling
,
nK
=
nK
,
ndim
=
self
.
_ndim
)
def
calculateEF
(
self
):
self
.
EF
=
fermiOnGrid
(
self
.
kham
,
self
.
filling
)
def
makeDensityMatrix
(
self
,
mf_model
,
nK
=
200
):
self
.
hkfunc
=
tb2kfunc
(
addTb
(
self
.
h_0
,
mf_model
))
self
.
calculateEF
(
nK
=
nK
)
return
kfunc2tb
(
densityMatrixGenerator
(
self
.
hkfunc
,
self
.
EF
),
nSamples
=
nK
,
ndim
=
self
.
_ndim
)
def
mfield
(
self
,
mf_model
,
nK
=
200
):
self
.
densityMatrix
=
self
.
makeDensityMatrix
(
mf_model
,
nK
=
nK
)
return
addTb
(
meanField
(
self
.
densityMatrix
,
self
.
h_int
,
n
=
self
.
_ndim
,
nK
=
nK
),
{
self
.
_localKey
:
-
self
.
EF
*
np
.
eye
(
self
.
_size
)},
)
#######################
def
calculateEFkvector
(
self
):
self
.
EF
=
fermiOnGridkvector
(
self
.
kham
,
self
.
filling
)
def
makeDensityMatrixkvector
(
self
,
mf_model
,
nK
=
200
):
self
.
kham
=
tb2kham
(
addTb
(
self
.
h_0
,
mf_model
),
nK
=
nK
,
ndim
=
self
.
_ndim
)
self
.
calculateEF
kvector
()
self
.
calculateEF
()
return
densityMatrix
(
self
.
kham
,
self
.
EF
)
def
mfield
FFTkvector
(
self
,
mf_model
,
nK
=
200
):
densityMatrix
=
self
.
makeDensityMatrix
kvector
(
mf_model
,
nK
=
nK
)
def
mfield
(
self
,
mf_model
,
nK
=
200
):
densityMatrix
=
self
.
makeDensityMatrix
(
mf_model
,
nK
=
nK
)
densityMatrixTb
=
ifftn2tb
(
kdens2tbFFT
(
densityMatrix
,
self
.
_ndim
))
return
addTb
(
meanField
FFTkvector
(
densityMatrixTb
,
self
.
h_int
,
n
=
self
.
_ndim
),
meanField
(
densityMatrixTb
,
self
.
h_int
,
n
=
self
.
_ndim
),
{
self
.
_localKey
:
-
self
.
EF
*
np
.
eye
(
self
.
_size
)},
)
...
...
This diff is collapsed.
Click to expand it.
codes/solvers.py
+
1
−
59
View file @
3a22cd6d
...
...
@@ -27,28 +27,6 @@ def cost(mf_param, Model, nK=100):
return
mf_params_new
-
mf_param
def
costkvector
(
mf_param
,
Model
,
nK
=
100
):
"""
Define the cost function for fixed point iteration.
The cost function is the difference between the input mean-field real space parametrisation
and a new mean-field.
Parameters
----------
mf_param : numpy.array
The mean-field real space parametrisation.
Model : Model
The model object.
nK : int, optional
The number of k-points to use in the grid. The default is 100.
"""
shape
=
Model
.
_size
mf_tb
=
rParams2mf
(
mf_param
,
list
(
Model
.
h_int
),
shape
)
mf_tb_new
=
Model
.
mfieldFFTkvector
(
mf_tb
,
nK
=
nK
)
mf_params_new
=
mf2rParams
(
mf_tb_new
)
return
mf_params_new
-
mf_param
def
solver
(
Model
,
mf_guess
,
nK
=
100
,
optimizer
=
scipy
.
optimize
.
anderson
,
optimizer_kwargs
=
{}
):
...
...
@@ -80,42 +58,6 @@ def solver(
result
=
rParams2mf
(
optimizer
(
f
,
mf_params
,
**
optimizer_kwargs
),
list
(
Model
.
h_int
),
shape
)
Model
.
calculateEF
(
nK
=
nK
)
localKey
=
tuple
(
np
.
zeros
((
Model
.
_ndim
,),
dtype
=
int
))
return
addTb
(
result
,
{
localKey
:
-
Model
.
EF
*
np
.
eye
(
shape
)})
def
solverkvector
(
Model
,
mf_guess
,
nK
=
100
,
optimizer
=
scipy
.
optimize
.
anderson
,
optimizer_kwargs
=
{}
):
"""
Solve the mean-field self-consistent equation.
Parameters
----------
Model : Model
The model object.
mf_guess : numpy.array
The initial guess for the mean-field tight-binding model.
nK : int, optional
The number of k-points to use in the grid. The default is 100.
optimizer : scipy.optimize, optional
The optimizer to use to solve for fixed-points. The default is scipy.optimize.anderson.
optimizer_kwargs : dict, optional
The keyword arguments to pass to the optimizer. The default is {}.
Returns
-------
result : numpy.array
The mean-field tight-binding model.
"""
shape
=
Model
.
_size
mf_params
=
mf2rParams
(
mf_guess
)
f
=
partial
(
costkvector
,
Model
=
Model
,
nK
=
nK
)
result
=
rParams2mf
(
optimizer
(
f
,
mf_params
,
**
optimizer_kwargs
),
list
(
Model
.
h_int
),
shape
)
Model
.
calculateEFkvector
()
Model
.
calculateEF
()
localKey
=
tuple
(
np
.
zeros
((
Model
.
_ndim
,),
dtype
=
int
))
return
addTb
(
result
,
{
localKey
:
-
Model
.
EF
*
np
.
eye
(
shape
)})
This diff is collapsed.
Click to expand it.
codes/test_graphene.py
+
2
−
4
View file @
3a22cd6d
# %%
import
numpy
as
np
from
codes.model
import
Model
from
codes.solvers
import
solver
kvector
from
codes.solvers
import
solver
from
codes
import
kwant_examples
from
codes.kwant_helper
import
utils
from
codes.tb.utils
import
compute_gap
...
...
@@ -49,9 +49,7 @@ def gap_prediction(U, V):
guess
=
utils
.
generate_guess
(
frozenset
(
h_int
),
len
(
list
(
h_0
.
values
())[
0
]))
model
=
Model
(
h_0
,
h_int
,
filling
)
mf_sol
=
solverkvector
(
model
,
guess
,
nK
=
nK
,
optimizer_kwargs
=
{
"
verbose
"
:
True
,
"
M
"
:
0
}
)
mf_sol
=
solver
(
model
,
guess
,
nK
=
nK
,
optimizer_kwargs
=
{
"
verbose
"
:
True
,
"
M
"
:
0
})
gap
=
compute_gap
(
addTb
(
h_0
,
mf_sol
),
n
=
100
)
# Check if the gap is predicted correctly
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment