Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
MeanFi
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Quantum Tinkerer
MeanFi
Commits
5dee5946
Commit
5dee5946
authored
1 year ago
by
Antonio Manesco
Browse files
Options
Downloads
Patches
Plain Diff
adapt utils for new interface
parent
4a6f9a79
No related branches found
No related tags found
1 merge request
!3
create solvers and interface modules
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
codes/utils.py
+39
-36
39 additions, 36 deletions
codes/utils.py
with
39 additions
and
36 deletions
codes/utils.py
+
39
−
36
View file @
5dee5946
...
@@ -133,24 +133,46 @@ def builder2tb_model(builder, params={}, return_data=False):
...
@@ -133,24 +133,46 @@ def builder2tb_model(builder, params={}, return_data=False):
return
tb_model
return
tb_model
def
dict
2hk
(
tb_
dict
):
def
model
2hk
(
tb_
model
):
"""
"""
Build Bloch Hamiltonian.
Build Bloch Hamiltonian.
Paramters:
----------
nk : int
Number of k-points along each direction.
tb_model : dictionary
Must have the following structure:
- Keys are tuples for each hopping vector (in units of lattice vectors).
- Values are hopping matrices.
return_ks : bool
Return k-points.
Returns:
--------
ham : nd.array
Hamiltonian evaluated on a k-point grid from k-points
along each direction evaluated from zero to 2*pi.
The indices are ordered as [k_1, ... , k_n, i, j], where
`k_m` corresponding to the k-point element along each
direction and `i` and `j` are the internal degrees of freedom.
ks : 1D-array
List of k-points over all directions. Only returned if `return_ks=True`.
Returns:
Returns:
--------
--------
bloch_ham : function
bloch_ham : function
Evaluates the Hamiltonian at a given k-point.
Evaluates the Hamiltonian at a given k-point.
"""
"""
assert
len
(
next
(
iter
(
tb_model
)))
>
0
,
"
Zero-dimensional system. The Hamiltonian is simply tb_model[()].
"
def
bloch_ham
(
k
):
def
bloch_ham
(
k
):
ham
=
0
ham
=
0
for
vector
in
tb_
dict
.
keys
():
for
vector
in
tb_
model
.
keys
():
ham
+=
tb_
dict
[
vector
]
*
np
.
exp
(
ham
+=
tb_
model
[
vector
]
*
np
.
exp
(
1j
*
np
.
dot
(
k
,
np
.
array
(
vector
,
dtype
=
float
))
1j
*
np
.
dot
(
k
,
np
.
array
(
vector
,
dtype
=
float
))
)
)
if
np
.
linalg
.
norm
(
np
.
array
(
vector
))
>
0
:
if
np
.
linalg
.
norm
(
np
.
array
(
vector
))
>
0
:
ham
+=
tb_
dict
[
vector
].
T
.
conj
()
*
np
.
exp
(
ham
+=
tb_
model
[
vector
].
T
.
conj
()
*
np
.
exp
(
-
1j
*
np
.
dot
(
k
,
np
.
array
(
vector
))
-
1j
*
np
.
dot
(
k
,
np
.
array
(
vector
))
)
)
return
ham
return
ham
...
@@ -158,7 +180,7 @@ def dict2hk(tb_dict):
...
@@ -158,7 +180,7 @@ def dict2hk(tb_dict):
return
bloch_ham
return
bloch_ham
def
kgrid_hamiltonian
(
nk
,
tb_model
,
return_
ks
=
False
):
def
kgrid_hamiltonian
(
nk
,
hk
,
dim
,
return_
info
=
False
):
"""
"""
Evaluates Hamiltonian on a k-point grid.
Evaluates Hamiltonian on a k-point grid.
...
@@ -166,12 +188,10 @@ def kgrid_hamiltonian(nk, tb_model, return_ks=False):
...
@@ -166,12 +188,10 @@ def kgrid_hamiltonian(nk, tb_model, return_ks=False):
----------
----------
nk : int
nk : int
Number of k-points along each direction.
Number of k-points along each direction.
tb_model : dictionary
hk : function
Must have the following structure:
Calculates the Hamiltonian at a given k-point.
- Keys are tuples for each hopping vector (in units of lattice vectors).
return_info : bool
- Values are hopping matrices.
If `True`, returns k-points and dimension of the tight.
return_ks : bool
Return k-points.
Returns:
Returns:
--------
--------
...
@@ -184,15 +204,6 @@ def kgrid_hamiltonian(nk, tb_model, return_ks=False):
...
@@ -184,15 +204,6 @@ def kgrid_hamiltonian(nk, tb_model, return_ks=False):
ks : 1D-array
ks : 1D-array
List of k-points over all directions. Only returned if `return_ks=True`.
List of k-points over all directions. Only returned if `return_ks=True`.
"""
"""
dim
=
len
(
next
(
iter
(
tb_model
)))
if
dim
==
0
:
if
return_ks
:
return
syst
[
next
(
iter
(
tb_model
))],
None
else
:
return
syst
[
next
(
iter
(
tb_model
))]
else
:
hk
=
dict2hk
(
tb_model
)
ks
=
2
*
np
.
pi
*
np
.
linspace
(
0
,
1
,
nk
,
endpoint
=
False
)
ks
=
2
*
np
.
pi
*
np
.
linspace
(
0
,
1
,
nk
,
endpoint
=
False
)
k_pts
=
np
.
tile
(
ks
,
dim
).
reshape
(
dim
,
nk
)
k_pts
=
np
.
tile
(
ks
,
dim
).
reshape
(
dim
,
nk
)
...
@@ -202,7 +213,7 @@ def kgrid_hamiltonian(nk, tb_model, return_ks=False):
...
@@ -202,7 +213,7 @@ def kgrid_hamiltonian(nk, tb_model, return_ks=False):
ham
.
append
(
hk
(
k
))
ham
.
append
(
hk
(
k
))
ham
=
np
.
array
(
ham
)
ham
=
np
.
array
(
ham
)
shape
=
(
*
[
nk
]
*
dim
,
ham
.
shape
[
-
1
],
ham
.
shape
[
-
1
])
shape
=
(
*
[
nk
]
*
dim
,
ham
.
shape
[
-
1
],
ham
.
shape
[
-
1
])
if
return_
ks
:
if
return_
info
:
return
ham
.
reshape
(
*
shape
),
ks
return
ham
.
reshape
(
*
shape
),
ks
else
:
else
:
return
ham
.
reshape
(
*
shape
)
return
ham
.
reshape
(
*
shape
)
...
@@ -236,15 +247,10 @@ def build_interacting_syst(builder, lattice, func_onsite, func_hop, max_neighbor
...
@@ -236,15 +247,10 @@ def build_interacting_syst(builder, lattice, func_onsite, func_hop, max_neighbor
int_builder
[
lattice
.
neighbors
(
neighbors
+
1
)]
=
func_hop
int_builder
[
lattice
.
neighbors
(
neighbors
+
1
)]
=
func_hop
return
int_builder
return
int_builder
def
generate_guess
(
vectors
,
ndof
,
scale
=
0.1
):
def
generate_guess
(
nk
,
tb_model
,
int_model
,
scale
=
0.1
):
"""
"""
nk : int
nk : int
Number of k-points along each direction.
Number of k-points along each direction.
tb_model : dict
Tight-binding model of non-interacting systems.
int_model : dict
Tight-binding model for interacting Hamiltonian.
scale : float
scale : float
The scale of the guess. Maximum absolute value of each element of the guess.
The scale of the guess. Maximum absolute value of each element of the guess.
...
@@ -253,11 +259,9 @@ def generate_guess(nk, tb_model, int_model, scale=0.1):
...
@@ -253,11 +259,9 @@ def generate_guess(nk, tb_model, int_model, scale=0.1):
guess : nd-array
guess : nd-array
Guess evaluated on a k-point grid.
Guess evaluated on a k-point grid.
"""
"""
ndof
=
tb_model
[
next
(
iter
(
tb_model
))].
shape
[
-
1
]
guess
=
{}
guess
=
{}
vectors
=
[
*
tb_model
.
keys
(),
*
int_model
.
keys
()]
for
vector
in
vectors
:
for
vector
in
vectors
:
amplitude
=
np
.
random
.
rand
(
ndof
,
ndof
)
amplitude
=
scale
*
np
.
random
.
rand
(
ndof
,
ndof
)
phase
=
2
*
np
.
pi
*
np
.
random
.
rand
(
ndof
,
ndof
)
phase
=
2
*
np
.
pi
*
np
.
random
.
rand
(
ndof
,
ndof
)
rand_hermitian
=
amplitude
*
np
.
exp
(
1j
*
phase
)
rand_hermitian
=
amplitude
*
np
.
exp
(
1j
*
phase
)
if
np
.
linalg
.
norm
(
np
.
array
(
vector
)):
if
np
.
linalg
.
norm
(
np
.
array
(
vector
)):
...
@@ -265,10 +269,12 @@ def generate_guess(nk, tb_model, int_model, scale=0.1):
...
@@ -265,10 +269,12 @@ def generate_guess(nk, tb_model, int_model, scale=0.1):
rand_hermitian
/=
2
rand_hermitian
/=
2
guess
[
vector
]
=
rand_hermitian
guess
[
vector
]
=
rand_hermitian
return
kgrid_hamiltonian
(
nk
,
guess
)
*
scale
return
guess
def
generate_vectors
(
cutoff
,
dim
):
return
np
.
array
([
*
product
(
*
([[
*
range
(
-
cutoff
,
cutoff
)]]
*
dim
))])
def
hk2tb_model
(
hk
,
tb_model
,
int_model
,
ks
=
None
):
def
hk2tb_model
(
hk
,
hopping_vecs
,
ks
=
None
):
"""
"""
Extract hopping matrices from Bloch Hamiltonian.
Extract hopping matrices from Bloch Hamiltonian.
...
@@ -289,9 +295,6 @@ def hk2tb_model(hk, tb_model, int_model, ks=None):
...
@@ -289,9 +295,6 @@ def hk2tb_model(hk, tb_model, int_model, ks=None):
TIght-binding model of Hartree-Fock solution.
TIght-binding model of Hartree-Fock solution.
"""
"""
if
ks
is
not
None
:
if
ks
is
not
None
:
hopping_vecs
=
np
.
unique
(
np
.
array
([
*
tb_model
.
keys
(),
*
int_model
.
keys
()]),
axis
=
0
)
ndim
=
len
(
hk
.
shape
)
-
2
ndim
=
len
(
hk
.
shape
)
-
2
dk
=
np
.
diff
(
ks
)[
0
]
dk
=
np
.
diff
(
ks
)[
0
]
nk
=
len
(
ks
)
nk
=
len
(
ks
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment