We write down the spinful by simply taking $H_0(k) \otimes \mathbb{1}$.
To build the tight-binding model, we need to generate a Hamiltonian on a k-point and the corresponding hopping vectors to generate a guess. We then verify the spectrum and see that the bands indeed consistent of two bands due to the Brillouin zone folding.
Here, in the workflow to find the ground state, we use a helper function to build the initial guess. because we don't need a dense k-point grid in the self-consistent loop, we compute the spectrum later on a denser k-point grid.
Finally, we compute the eigen0alues for a set of Ualues of $U$. For this case, since the interaction is onsite only, the interaction matrix is simply
The Hartree-Fock dispersion should follow (see [these notes](https://www.cond-mat.de/events/correl11/manuscript/Lechermann.pdf))
$$
\epsilon_{HF}^{\sigma}(\mathbf{k}) = \epsilon(\mathbf{k}) + U \left(\frac{n}{2} + \sigma m\right)
$$
where $m=(\langle n_{i\uparrow} \rangle - \langle n_{i\downarrow} \rangle) / 2$ is the magnetization per atom and $n = \sum_i \langle n_i \rangle$ is the total number of atoms per cell. Thus, for the antiferromagnetic groundstate, $m=1/2$ and $n=2$. The gap thus should be $\Delta=U$. And we can confirm it indeed follows the expected trend.