Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
MeanFi
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Quantum Tinkerer
MeanFi
Commits
741a0084
Commit
741a0084
authored
Mar 27, 2024
by
Kostas Vilkelis
Browse files
Options
Downloads
Patches
Plain Diff
pull from origin/main utils
parent
7c6d8ce0
Branches
Branches containing commit
Tags
Tags containing commit
1 merge request
!4
Interface refactoring
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
codes/kwant_helper/utils.py
+131
-46
131 additions, 46 deletions
codes/kwant_helper/utils.py
with
131 additions
and
46 deletions
codes/kwant_helper/utils.py
+
131
−
46
View file @
741a0084
import
numpy
as
np
import
kwant
from
itertools
import
product
from
scipy.sparse
import
coo_array
from
itertools
import
product
import
inspect
from
copy
import
copy
...
...
@@ -113,6 +113,11 @@ def builder2tb_model(builder, params={}, return_data=False):
.
toarray
()
.
T
.
conj
()
)
else
:
# Hopping vector in the opposite direction
tb_model
[
tuple
(
-
b_dom
)]
+=
coo_array
(
(
data
,
(
row
,
col
)),
shape
=
(
norbs_tot
,
norbs_tot
)
).
toarray
().
T
.
conj
()
else
:
tb_model
[
tuple
(
b_dom
)]
=
coo_array
(
(
data
,
(
row
,
col
)),
shape
=
(
norbs_tot
,
norbs_tot
)
...
...
@@ -123,6 +128,10 @@ def builder2tb_model(builder, params={}, return_data=False):
.
toarray
()
.
T
.
conj
()
)
else
:
tb_model
[
tuple
(
-
b_dom
)]
=
coo_array
(
(
data
,
(
row
,
col
)),
shape
=
(
norbs_tot
,
norbs_tot
)
).
toarray
().
T
.
conj
()
if
return_data
:
data
=
{}
...
...
@@ -133,32 +142,53 @@ def builder2tb_model(builder, params={}, return_data=False):
return
tb_model
def
dict
2hk
(
tb_
dict
):
def
model
2hk
(
tb_
model
):
"""
Build Bloch Hamiltonian.
Paramters:
----------
nk : int
Number of k-points along each direction.
tb_model : dictionary
Must have the following structure:
- Keys are tuples for each hopping vector (in units of lattice vectors).
- Values are hopping matrices.
return_ks : bool
Return k-points.
Returns:
--------
ham : nd.array
Hamiltonian evaluated on a k-point grid from k-points
along each direction evaluated from zero to 2*pi.
The indices are ordered as [k_1, ... , k_n, i, j], where
`k_m` corresponding to the k-point element along each
direction and `i` and `j` are the internal degrees of freedom.
ks : 1D-array
List of k-points over all directions. Only returned if `return_ks=True`.
Returns:
--------
bloch_ham : function
Evaluates the Hamiltonian at a given k-point.
"""
assert
(
len
(
next
(
iter
(
tb_model
)))
>
0
),
"
Zero-dimensional system. The Hamiltonian is simply tb_model[()].
"
def
bloch_ham
(
k
):
ham
=
0
for
vector
in
tb_dict
.
keys
():
ham
+=
tb_dict
[
vector
]
*
np
.
exp
(
1j
*
np
.
dot
(
k
,
np
.
array
(
vector
,
dtype
=
float
))
)
if
np
.
linalg
.
norm
(
np
.
array
(
vector
))
>
0
:
ham
+=
tb_dict
[
vector
].
T
.
conj
()
*
np
.
exp
(
-
1j
*
np
.
dot
(
k
,
np
.
array
(
vector
))
for
vector
in
tb_model
.
keys
():
ham
+=
tb_model
[
vector
]
*
np
.
exp
(
-
1j
*
np
.
dot
(
k
,
np
.
array
(
vector
,
dtype
=
float
))
)
return
ham
return
bloch_ham
def
kgrid_hamiltonian
(
nk
,
tb_model
,
return_ks
=
False
):
def
kgrid_hamiltonian
(
nk
,
hk
,
dim
,
return_ks
=
False
,
hermitian
=
True
):
"""
Evaluates Hamiltonian on a k-point grid.
...
...
@@ -166,12 +196,10 @@ def kgrid_hamiltonian(nk, tb_model, return_ks=False):
----------
nk : int
Number of k-points along each direction.
tb_model : dictionary
Must have the following structure:
- Keys are tuples for each hopping vector (in units of lattice vectors).
- Values are hopping matrices.
hk : function
Calculates the Hamiltonian at a given k-point.
return_ks : bool
R
eturn k-points.
If `True`, r
eturn
s
k-points.
Returns:
--------
...
...
@@ -184,15 +212,6 @@ def kgrid_hamiltonian(nk, tb_model, return_ks=False):
ks : 1D-array
List of k-points over all directions. Only returned if `return_ks=True`.
"""
dim
=
len
(
next
(
iter
(
tb_model
)))
if
dim
==
0
:
if
return_ks
:
return
syst
[
next
(
iter
(
tb_model
))],
None
else
:
return
syst
[
next
(
iter
(
tb_model
))]
else
:
hk
=
dict2hk
(
tb_model
)
ks
=
2
*
np
.
pi
*
np
.
linspace
(
0
,
1
,
nk
,
endpoint
=
False
)
k_pts
=
np
.
tile
(
ks
,
dim
).
reshape
(
dim
,
nk
)
...
...
@@ -201,6 +220,10 @@ def kgrid_hamiltonian(nk, tb_model, return_ks=False):
for
k
in
product
(
*
k_pts
):
ham
.
append
(
hk
(
k
))
ham
=
np
.
array
(
ham
)
if
hermitian
:
assert
np
.
allclose
(
ham
,
np
.
transpose
(
ham
,
(
0
,
2
,
1
)).
conj
()
),
"
Tight-binding provided is non-Hermitian. Not supported yet
"
shape
=
(
*
[
nk
]
*
dim
,
ham
.
shape
[
-
1
],
ham
.
shape
[
-
1
])
if
return_ks
:
return
ham
.
reshape
(
*
shape
),
ks
...
...
@@ -237,38 +260,56 @@ def build_interacting_syst(builder, lattice, func_onsite, func_hop, max_neighbor
return
int_builder
def
generate_guess
(
tb_model
,
int_model
,
scale
=
0.1
):
def
generate_guess
(
vectors
,
ndof
,
scale
=
0.1
):
"""
tb_model : dic
t
Tight-binding model of non-interacting system
s.
int_model : dic
t
Tight-binding model for interacting Hamiltonian.
vectors : lis
t
List of hopping vector
s.
ndof : in
t
Number internal degrees of freedom (orbitals),
scale : float
The scale of the guess. Maximum absolute value of each element of the guess.
Returns:
--------
guess : tb dictionary
TB guess
.
Guess in the form of a tight-binding model
.
"""
ndof
=
tb_model
[
next
(
iter
(
tb_model
))].
shape
[
-
1
]
guess
=
{}
vectors
=
frozenset
(
tb_model
)
|
frozenset
(
int_model
)
for
vector
in
vectors
:
amplitude
=
np
.
random
.
rand
(
ndof
,
ndof
)
if
vector
not
in
guess
.
keys
():
amplitude
=
scale
*
np
.
random
.
rand
(
ndof
,
ndof
)
phase
=
2
*
np
.
pi
*
np
.
random
.
rand
(
ndof
,
ndof
)
rand_hermitian
=
amplitude
*
np
.
exp
(
1j
*
phase
)
guess
[
vector
]
=
rand_hermitian
*
scale
op_vector
=
tuple
(
-
np
.
array
(
vector
))
if
op_vector
==
vector
:
guess
[
vector
]
+=
guess
[
vector
].
T
.
conj
()
guess
[
vector
]
/=
2
if
np
.
linalg
.
norm
(
np
.
array
(
vector
))
==
0
:
rand_hermitian
+=
rand_hermitian
.
T
.
conj
()
rand_hermitian
/=
2
guess
[
vector
]
=
rand_hermitian
else
:
guess
[
op_vector
]
=
guess
[
vector
].
T
.
conj
()
guess
[
vector
]
=
rand_hermitian
guess
[
tuple
(
-
np
.
array
(
vector
))]
=
rand_hermitian
.
T
.
conj
()
return
guess
def
hk2tb_model
(
hk
,
tb_model
,
int_model
,
ks
=
None
):
def
generate_vectors
(
cutoff
,
dim
):
"""
Generates hopping vectors up to a cutoff.
Parameters:
-----------
cutoff : int
Maximum distance along each direction.
dim : int
Dimension of the vectors.
Returns:
--------
List of hopping vectors.
"""
return
[
*
product
(
*
([[
*
range
(
-
cutoff
,
cutoff
+
1
)]]
*
dim
))]
def
hk2tb_model
(
hk
,
hopping_vecs
,
ks
=
None
):
"""
Extract hopping matrices from Bloch Hamiltonian.
...
...
@@ -289,9 +330,6 @@ def hk2tb_model(hk, tb_model, int_model, ks=None):
TIght-binding model of Hartree-Fock solution.
"""
if
ks
is
not
None
:
hopping_vecs
=
np
.
unique
(
np
.
array
([
*
tb_model
.
keys
(),
*
int_model
.
keys
()]),
axis
=
0
)
ndim
=
len
(
hk
.
shape
)
-
2
dk
=
np
.
diff
(
ks
)[
0
]
nk
=
len
(
ks
)
...
...
@@ -337,3 +375,50 @@ def calc_gap(vals, E_F):
emax
=
np
.
max
(
vals
[
vals
<=
E_F
])
emin
=
np
.
min
(
vals
[
vals
>
E_F
])
return
np
.
abs
(
emin
-
emax
)
def
matrix_to_flat
(
matrix
):
"""
Flatten the upper triangle of a collection of matrices.
Parameters:
-----------
matrix : nd-array
Array with shape (..., n, n)
"""
return
matrix
[...,
*
np
.
triu_indices
(
matrix
.
shape
[
-
1
])].
flatten
()
def
flat_to_matrix
(
flat
,
shape
):
"""
Undo `matrix_to_flat`.
Parameters:
-----------
flat : 1d-array
Output from `matrix_to_flat`.
shape : 1d-array
Shape of the input from `matrix_to_flat`.
"""
matrix
=
np
.
zeros
(
shape
,
dtype
=
complex
)
matrix
[...,
*
np
.
triu_indices
(
shape
[
-
1
])]
=
flat
.
reshape
(
*
shape
[:
-
2
],
-
1
)
indices
=
np
.
arange
(
shape
[
-
1
])
diagonal
=
matrix
[...,
indices
,
indices
]
matrix
+=
np
.
moveaxis
(
matrix
,
-
1
,
-
2
).
conj
()
matrix
[...,
indices
,
indices
]
-=
diagonal
return
matrix
def
complex_to_real
(
z
):
"""
Split real and imaginary parts of a complex array.
Parameters:
-----------
z : array
"""
return
np
.
concatenate
((
np
.
real
(
z
),
np
.
imag
(
z
)))
def
real_to_complex
(
z
):
"""
Undo `complex_to_real`.
"""
return
z
[:
len
(
z
)
//
2
]
+
1j
*
z
[
len
(
z
)
//
2
:]
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment