Skip to content
Snippets Groups Projects
Commit 95bb5463 authored by Kostas Vilkelis's avatar Kostas Vilkelis :flamingo: Committed by Johanna Zijderveld
Browse files

apply naming suggestions

parent 6b5d9463
No related branches found
No related tags found
1 merge request!7Examples
This commit is part of merge request !7. Comments created here will be created in the context of that merge request.
......@@ -13,7 +13,7 @@ To define the interactive problem, we use the following class:
```{eval-rst}
.. automodule:: pymf.mf
:members: meanfield, construct_density_matrix, construct_density_matrix_kgrid, fermi_on_grid
:members: meanfield, construct_density_matrix, construct_density_matrix_kgrid, fermi_on_kgrid
:show-inheritance:
```
......
......@@ -14,7 +14,7 @@ from .solvers import solver
from .model import Model
from .observables import expectation_value
from .tb.tb import add_tb, scale_tb
from .tb.transforms import tb_to_khamvector
from .tb.transforms import tb_to_kgrid
from .tb.utils import generate_guess, calculate_fermi_energy
......@@ -28,7 +28,7 @@ __all__ = [
"calculate_fermi_energy",
"construct_density_matrix",
"meanfield",
"tb_to_khamvector",
"tb_to_kgrid",
"__version__",
"__version_tuple__",
]
......@@ -3,7 +3,7 @@ from scipy.fftpack import ifftn
from typing import Tuple
from pymf.tb.tb import add_tb, _tb_type
from pymf.tb.transforms import ifftn_to_tb, tb_to_khamvector
from pymf.tb.transforms import ifftn_to_tb, tb_to_kgrid
def construct_density_matrix_kgrid(
......@@ -27,7 +27,7 @@ def construct_density_matrix_kgrid(
Density matrix on a k-space grid with shape (nk, nk, ..., ndof, ndof) and Fermi energy.
"""
vals, vecs = np.linalg.eigh(kham)
fermi = fermi_on_grid(vals, filling)
fermi = fermi_on_kgrid(vals, filling)
unocc_vals = vals > fermi
occ_vecs = vecs
np.moveaxis(occ_vecs, -1, -2)[unocc_vals, :] = 0
......@@ -58,7 +58,7 @@ def construct_density_matrix(
"""
ndim = len(list(h)[0])
if ndim > 0:
kham = tb_to_khamvector(h, nk=nk)
kham = tb_to_kgrid(h, nk=nk)
density_matrix_krid, fermi = construct_density_matrix_kgrid(kham, filling)
return (
ifftn_to_tb(ifftn(density_matrix_krid, axes=np.arange(ndim))),
......@@ -115,7 +115,7 @@ def meanfield(density_matrix: _tb_type, h_int: _tb_type) -> _tb_type:
return add_tb(direct, exchange)
def fermi_on_grid(vals: np.ndarray, filling: float) -> float:
def fermi_on_kgrid(vals: np.ndarray, filling: float) -> float:
"""Compute the Fermi energy on a grid of k-points.
Parameters
......
......@@ -4,7 +4,7 @@ import numpy as np
from pymf.tb.tb import _tb_type
def tb_to_khamvector(tb: _tb_type, nk: int) -> np.ndarray:
def tb_to_kgrid(tb: _tb_type, nk: int) -> np.ndarray:
"""Evaluate a tight-binding dictionary on a k-space grid.
Parameters
......
......@@ -2,8 +2,8 @@ from itertools import product
import numpy as np
from pymf.tb.tb import _tb_type
from pymf.mf import fermi_on_grid
from pymf.tb.transforms import tb_to_khamvector
from pymf.mf import fermi_on_kgrid
from pymf.tb.transforms import tb_to_kgrid
def generate_guess(
......@@ -79,6 +79,6 @@ def calculate_fermi_energy(tb: _tb_type, filling: float, nk: int = 100):
:
Fermi energy.
"""
kham = tb_to_khamvector(tb, nk)
kham = tb_to_kgrid(tb, nk)
vals = np.linalg.eigvalsh(kham)
return fermi_on_grid(vals, filling)
return fermi_on_kgrid(vals, filling)
......@@ -6,7 +6,7 @@ from pymf.kwant_helper import kwant_examples, utils
from pymf import (
Model,
solver,
tb_to_khamvector,
tb_to_kgrid,
generate_guess,
add_tb,
)
......@@ -29,7 +29,7 @@ def compute_gap(tb, fermi_energy=0, nk=100):
gap : float
Indirect gap.
"""
kham = tb_to_khamvector(tb, nk)
kham = tb_to_kgrid(tb, nk)
vals = np.linalg.eigvalsh(kham)
emax = np.max(vals[vals <= fermi_energy])
......
......@@ -6,7 +6,7 @@ import pytest
from scipy.fftpack import ifftn
from pymf.tb.tb import compare_dicts
from pymf.tb.transforms import ifftn_to_tb, tb_to_khamvector
from pymf.tb.transforms import ifftn_to_tb, tb_to_kgrid
repeat_number = 10
......@@ -24,6 +24,6 @@ def test_fourier(seed):
keys = [np.arange(-max_order + 1, max_order) for i in range(ndim)]
keys = it.product(*keys)
h_0 = {key: (np.random.rand(matrix_size, matrix_size) - 0.5) * 2 for key in keys}
kham = tb_to_khamvector(h_0, nk=nk)
kham = tb_to_kgrid(h_0, nk=nk)
tb_new = ifftn_to_tb(ifftn(kham, axes=np.arange(ndim)))
compare_dicts(h_0, tb_new)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment