Skip to content
Snippets Groups Projects
Commit a8cbb668 authored by Antonio Manesco's avatar Antonio Manesco
Browse files

reorganize folders

parent 38d18e7b
No related branches found
No related tags found
1 merge request!2Remove kwant dependencies
../codes/
\ No newline at end of file
File moved
File moved
%% Cell type:code id:cb509096-42c6-4a45-8dc4-a8eed3116e67 tags:
``` python
import kwant
import numpy as np
import matplotlib.pyplot as plt
import utils, hf
from scipy.optimize import anderson
from tqdm import tqdm
s0 = np.identity(2)
sz = np.diag([1, -1])
norbs=2
graphene = kwant.lattice.general(
[[1, 0], [1 / 2, np.sqrt(3) / 2]], [[0, 0], [0, 1 / np.sqrt(3)]],
norbs=norbs
)
a, b = graphene.sublattices
# create bulk system
bulk_graphene = kwant.Builder(kwant.TranslationalSymmetry(*graphene.prim_vecs))
# add sublattice potential
m0 = 0
bulk_graphene[a.shape((lambda pos: True), (0, 0))] = m0 * sz
bulk_graphene[b.shape((lambda pos: True), (0, 0))] = -m0 * sz
# add hoppings between sublattices
bulk_graphene[graphene.neighbors(1)] = s0
# use kwant wraparound to sample bulk k-space
wrapped_syst = kwant.wraparound.wraparound(bulk_graphene)
wrapped_fsyst = kwant.wraparound.wraparound(bulk_graphene).finalized()
```
%% Cell type:code id:9cc3b32d-404f-4bc5-a338-83571c9e4c4b tags:
``` python
def func_onsite(site, U):
return U * np.ones((2, 2))
def func_hop(site1, site2, V):
rij = np.linalg.norm(site1.pos - site2.pos)
return V * np.ones((2, 2))
def calculate_Hint(U, V, Uk, Vk):
return U * Uk + V * Vk
```
%% Cell type:code id:a341e0e5-330e-48d1-a20f-a0040688a9d7 tags:
``` python
nk = 10
# Generate coarse-grid k-points
ks, dk = np.linspace(0, 2 * np.pi, nk, endpoint=False, retstep=True)
# Generate Hamiltonian on a k-point grid
hamiltonians_0 = utils.syst2hamiltonian(ks=ks, syst=wrapped_fsyst)
```
%% Cell type:code id:d1ef154e-70bd-4f28-887f-72362d8533dd tags:
``` python
Us = np.linspace(0, 4, 50)
Vs = np.linspace(0, 1.5, 20)
```
%% Cell type:code id:32b9e7c5-db12-44f9-930c-21e5494404b8 tags:
``` python
_, deltas = utils.generate_scf_syst(
max_neighbor=1, syst=wrapped_syst, lattice=graphene
)
deltas = np.asarray(deltas) #deltas are the hopping vecs
deltas = np.unique(np.stack([*deltas, *-deltas]), axis=(0))
def compute_gap(
U,
V,
H_int,
max_neighbor=1,
lattice=graphene,
filling=2,
nk=12,
tol=1e-5,
norbs=norbs,
nk_dense=30,
mixing=0.5,
order=1,
guess=None
):
# Generate coarse-grid k-points
ks, dk = np.linspace(0, 2 * np.pi, nk, endpoint=False, retstep=True)
# Generate Hamiltonian on a k-point grid
hamiltonians_0 = utils.syst2hamiltonian(ks=ks, syst=wrapped_fsyst)
# Generate guess on the same grid
if guess is None:
guess = guess = utils.generate_guess(nk, 2, deltas, ndof=4, scale=1)
else:
# guess *= 0.25
guess += np.max(guess) * utils.generate_guess(nk, 2, deltas, ndof=4, scale=0.1)
# guess = guess
# Find groundstate Hamiltonian on the same grid
hk = hf.find_groundstate_ham(
H_int=H_int,
nk=nk,
filling=filling,
hamiltonians_0=hamiltonians_0,
tol=tol,
guess=guess,
mixing=mixing,
order=order,
)
# Diagonalize groundstate Hamiltonian
vals, vecs = np.linalg.eigh(hk)
# Extract coarse-grid Fermi energy
E_F = utils.get_fermi_energy(vals, 2)
# Generate kwant system with k-grid Hamiltonian
scf_syst = utils.hk2syst(deltas, hk, ks, dk, max_neighbor, norbs, lattice)
# Generate dense-grid k-points
ks_dense = np.linspace(0, 2 * np.pi, nk_dense, endpoint=False)
# Compute groundstate Hamiltonian on a dense grid
scf_ham = utils.syst2hamiltonian(
ks=ks_dense, syst=scf_syst, params={}
)
# Diagonalize groundstate Hamiltonian
vals, vecs = np.linalg.eigh(scf_ham)
# Extract dense-grid Fermi energy
E_F = utils.get_fermi_energy(vals, 2)
gap = utils.calc_gap(vals, E_F)
return gap, hk
def compute_phase_diagram(Us, Vs, nk, tol, mixing, order):
import qsymm
import adaptive
import utils, hf
ks = np.linspace(0, 2 * np.pi, nk, endpoint=False)
Uk = utils.potential2hamiltonian(
syst=wrapped_syst,
lattice=graphene,
func_onsite=func_onsite,
func_hop=func_hop,
params=dict(U=1, V=0),
ks=ks,
)
Vk = utils.potential2hamiltonian(
syst=wrapped_syst,
lattice=graphene,
func_onsite=func_onsite,
func_hop=func_hop,
params=dict(U=0, V=1),
ks=ks,
)
gap = []
for U in tqdm(Us):
guess = None
gap_U = []
for V in Vs:
H_int = calculate_Hint(U, V, Uk, Vk)
_gap, guess = compute_gap(
U=U, V=V, H_int=H_int, nk=nk, tol=tol, mixing=mixing, order=order, guess=guess
)
gap_U.append(_gap)
gap.append(gap_U)
return np.asarray(gap, dtype=float)
```
%% Cell type:code id:6a8c08a9-7e31-420b-b6b4-709abfb26793 tags:
``` python
gap = compute_phase_diagram(Us, Vs, nk=15, tol=1e-5, mixing=0.01, order=10)
```
%% Output
22%|██▏ | 11/50 [02:33<07:34, 11.66s/it]/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=4.86112e-17): result may not be accurate.
gamma = solve(self.a, df_f)
/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=1.11881e-17): result may not be accurate.
gamma = solve(self.a, df_f)
/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=6.6988e-17): result may not be accurate.
gamma = solve(self.a, df_f)
/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=1.04075e-17): result may not be accurate.
gamma = solve(self.a, df_f)
/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=1.03848e-17): result may not be accurate.
gamma = solve(self.a, df_f)
/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=1.08015e-17): result may not be accurate.
gamma = solve(self.a, df_f)
/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=1.07054e-17): result may not be accurate.
gamma = solve(self.a, df_f)
32%|███▏ | 16/50 [03:37<06:44, 11.89s/it]/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=6.43375e-17): result may not be accurate.
gamma = solve(self.a, df_f)
34%|███▍ | 17/50 [03:58<08:05, 14.71s/it]/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=7.90352e-17): result may not be accurate.
gamma = solve(self.a, df_f)
54%|█████▍ | 27/50 [07:18<09:45, 25.48s/it]/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=3.27211e-17): result may not be accurate.
gamma = solve(self.a, df_f)
58%|█████▊ | 29/50 [09:18<15:24, 44.03s/it]/opt/conda/lib/python3.11/site-packages/scipy/optimize/_nonlin.py:1074: LinAlgWarning: Ill-conditioned matrix (rcond=5.90338e-17): result may not be accurate.
gamma = solve(self.a, df_f)
100%|██████████| 50/50 [22:03<00:00, 26.47s/it]
%% Cell type:code id:39edbf19 tags:
``` python
plt.imshow(np.log10(gap).T, origin='lower', extent=(Us.min(), Us.max(), Vs.min(), Vs.max()), vmin=-1)
plt.colorbar()
```
%% Output
<matplotlib.colorbar.Colorbar at 0x7f12eff193d0>
%% Cell type:code id:27f9d0d8 tags:
``` python
plt.imshow((gap).T, origin='lower', extent=(Us.min(), Us.max(), Vs.min(), Vs.max()), vmin=0)
plt.colorbar()
```
%% Output
<matplotlib.colorbar.Colorbar at 0x7f12effcd650>
%% Cell type:code id:e17fc96c-c463-4e1f-8250-c254d761b92a tags:
``` python
import xarray as xr
gap_da = xr.DataArray(data=gap, coords=dict(Us=Us, Vs=Vs))
```
%% Cell type:code id:0cb395cd-84d1-49b4-89dd-da7a2d09c8d0 tags:
``` python
gap_da.to_netcdf('./data/graphene_example.nc')
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment