Skip to content
Snippets Groups Projects

Examples

Merged Kostas Vilkelis requested to merge examples into main
1 file
+ 123
0
Compare changes
  • Side-by-side
  • Inline
+ 123
0
---
jupytext:
text_representation:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.14.4
kernelspec:
display_name: Python 3 (ipykernel)
language: python
name: python3
---
# 1d Hubbard
```{code-cell} ipython3
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
import pymf
```
To simulate infinite systems, we provide the corresponding tight-binding model.
We exemplify this construction by computing the ground state of an infinite spinful chain with onsite interactions.
Because the ground state is an antiferromagnet, so we must build a two-atom cell. We name the two sublattices, $A$ and $B$. The Hamiltonian in is:
$$
H_0 = \sum_i c_{i, B}^{\dagger}c_{i, A} + c_{i, A}^{\dagger}c_{i+1, B} + h.c.
$$
We write down the spinful by simply taking $H_0(k) \otimes \mathbb{1}$.
To build the tight-binding model, we need to generate a Hamiltonian on a k-point and the corresponding hopping vectors to generate a guess. We then verify the spectrum and see that the bands indeed consistent of two bands due to the Brillouin zone folding.
```{code-cell} ipython3
# Set number of k-points
nk = 100
ks = np.linspace(0, 2*np.pi, nk, endpoint=False)
hamiltonians_0 = transforms.tb_to_khamvector(h_0, nk, 1, ks=ks)
# Perform diagonalization
vals, vecs = np.linalg.eigh(hamiltonians_0)
# Plot data
plt.plot(ks, vals, c="k")
plt.xticks([0, np.pi, 2 * np.pi], ["$0$", "$\pi$", "$2\pi$"])
plt.xlim(0, 2 * np.pi)
plt.ylabel("$E - E_F$")
plt.xlabel("$k / a$")
plt.show()
```
Here, in the workflow to find the ground state, we use a helper function to build the initial guess. because we don't need a dense k-point grid in the self-consistent loop, we compute the spectrum later on a denser k-point grid.
Finally, we compute the eigen0alues for a set of Ualues of $U$. For this case, since the interaction is onsite only, the interaction matrix is simply
$$
H_{int} =
\left(\begin{array}{cccc}
U & U & 0 & 0\\
U & U & 0 & 0\\
0 & 0 & U & U\\
0 & 0 & U & U
\end{array}\right)~.
$$
```{code-cell} ipython3
def compute_phase_diagram(
Us,
nk,
nk_dense,
filling=2,
):
gap = []
vals = []
for U in tqdm(Us):
# onsite interactions
h_int = {
(0,): U * np.kron(np.ones((2, 2)), np.eye(2)),
}
guess = utils.generate_guess(frozenset(h_int), len(list(h_0.values())[0]))
full_model = Model(h_0, h_int, filling)
mf_sol = solver(full_model, guess, nk=nk)
hkfunc = transforms.tb_to_kfunc(add_tb(h_0, mf_sol))
ks_dense = np.linspace(0, 2 * np.pi, nk_dense, endpoint=False)
hkarray = np.array([hkfunc(kx) for kx in ks_dense])
_vals = np.linalg.eigvalsh(hkarray)
_gap = (utils.compute_gap(add_tb(h_0, mf_sol), fermi_energy=0, nk=nk_dense))
gap.append(_gap)
vals.append(_vals)
return np.asarray(gap, dtype=float), np.asarray(vals)
import xarray as xr
ds = xr.Dataset(
data_vars=dict(vals=(["Us", "ks", "n"], vals), gap=(["Us"], gap)),
coords=dict(
Us=Us,
ks=np.linspace(0, 2 * np.pi, nk_dense),
n=np.arange(vals.shape[-1])
),
)
# Interaction strengths
Us = np.linspace(0.5, 10, 20, endpoint=True)
nk, nk_dense = 40, 100
gap, vals = compute_phase_diagram(Us=Us, nk=nk, nk_dense=nk_dense)
ds.vals.plot.scatter(x="ks", hue="Us", ec=None, s=5)
plt.axhline(0, ls="--", c="k")
plt.xticks([0, np.pi, 2 * np.pi], ["$0$", "$\pi$", "$2\pi$"])
plt.xlim(0, 2 * np.pi)
plt.ylabel("$E - E_F$")
plt.xlabel("$k / a$")
plt.show()
```
The Hartree-Fock dispersion should follow (see [these notes](https://www.cond-mat.de/events/correl11/manuscript/Lechermann.pdf))
$$
\epsilon_{HF}^{\sigma}(\mathbf{k}) = \epsilon(\mathbf{k}) + U \left(\frac{n}{2} + \sigma m\right)
$$
where $m=(\langle n_{i\uparrow} \rangle - \langle n_{i\downarrow} \rangle) / 2$ is the magnetization per atom and $n = \sum_i \langle n_i \rangle$ is the total number of atoms per cell. Thus, for the antiferromagnetic groundstate, $m=1/2$ and $n=2$. The gap thus should be $\Delta=U$. And we can confirm it indeed follows the expected trend.
Loading