Skip to content
Snippets Groups Projects
Commit be105144 authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 11_nearly_free_electron_model_solutions.md - fix

parent 44f306e5
No related branches found
No related tags found
No related merge requests found
Pipeline #59534 passed
......@@ -134,23 +134,31 @@ E_-(k) = -\frac{\lambda}{a}+\frac{\hbar^2}{4m}\left[k^2+\left(k-\frac{2\pi}{a}\r
See the lecture notes!
### Subquestion 3
We split the Hamiltonian into two parts $H=H_0+H_1$, where$H_0$ describes a particle in one delta-function potential well, and $H_1$ is the perturbation by the other delta functions:
We split the Hamiltonian into two parts $H=H_n+H_{~n}$, where $H_n$ describes a particle in a single delta-function potential well, and $H_{~n}$ is the perturbation by the other delta functions:
\begin{align}
H_0 = & \frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} - \V_0\delta(x-na) \\
H_1 = & - V_0 \sum_{m\neq n}\delta(x-ma)
H_n = & \frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} - V_0\delta(x-na) \\
H_{~n} = & - V_0 \sum_{m\neq n}\delta(x-ma)
\end{align}
such that $H_0|n\rangle = -\epsilon_0|n\rangle = -\hbar^2\kappa^2/2m |n\rangle$ with $\kappa=mV_0/\hbar^2$.
such that $H_n|n\rangle = -\epsilon_0|n\rangle = -\hbar^2\kappa^2/2m |n\rangle$ with $\kappa=mV_0/\hbar^2$. We can now calculate
$$
\langle n | H |n \rangle = \epsilon_0 + \langle n |H_{~n}|n\rangle
$$
Note that the last term represents the change in energy of the wavefunction $|n\rangle$ that is centered at the $n$-th delta function caused by the presence of the other delta functions. This term yields
$$
\langle n |H_{~n}|n\rangle = \kappa \sum_{m \neq 0 }\int e^{-2\kappa|x|}\delta(x-ma) = \kappa \sum_{m \neq 0 } e^{-2\kappa|ma|} = 2\kappa(\frac{1}{1-e^{-2\kappa a}}-1)
$$
Note that the result should not depend on $n$, so we chose $n=0$ for convenience.
It follows that
Similarly, we can calculate
$$
\langle n | H |n \rangle = \epsilon_0 + \langle n |H_1|n\rangle
\langle n-1 | H |n \rangle = \epsilon_0\langle n-1 |n \rangle + \langle n-1 |H_{~n}|n\rangle
$$
where
where $\langle n-1|n\rangle$ is the overlap between two neighbouring wavefunctions, given by
$$
\langle n |H_1|n\rangle = \kappa \sum_{m \neq 0 }\int e^{-2\kappa|x|}\delta(x-ma) = \kappa \sum_{m \neq 0 } e^{-2\kappa|ma|}
$\langle n-1|n\rangle$ = 2\kappa\int_0^\infty e^{-\kappa|x-a/2|}e^{-\kappa|x+a/2|} = e^{-\kappa a}(1+\kappa a)
$$
In progress of being updated....
In progress of being updated......
\begin{equation}
\varepsilon_0=\braket{n|\hat{H}|n}=\braket{n|\hat{K}|n}+\braket{n|\hat{V}(x)|n}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment