Skip to content
Snippets Groups Projects
Commit 396802da authored by Kostas Vilkelis's avatar Kostas Vilkelis :flamingo:
Browse files

adjust imports in tests

parent e5edbefd
No related branches found
No related tags found
1 merge request!6Documentation
Pipeline #179636 passed
This commit is part of merge request !6. Comments created here will be created in the context of that merge request.
......@@ -3,11 +3,13 @@ import numpy as np
import pytest
from pymf.kwant_helper import kwant_examples, utils
from pymf.model import Model
from pymf.solvers import solver
from pymf.tb.tb import add_tb
from pymf.tb.transforms import tb_to_khamvector
from pymf.tb.utils import generate_guess
from pymf import (
Model,
solver,
tb_to_khamvector,
generate_guess,
add_tb,
)
def compute_gap(tb, fermi_energy=0, nk=100):
......
# %%
import numpy as np
from pymf.solvers import solver
from pymf.tb import utils
from pymf.model import Model
from pymf.tb.tb import add_tb, scale_tb
from pymf import mf
from pymf import observables
import pytest
from pymf import (
Model,
solver,
generate_guess,
scale_tb,
add_tb,
expectation_value,
construct_density_matrix,
)
# %%
def total_energy(ham_tb, rho_tb):
return np.real(observables.expectation_value(rho_tb, ham_tb))
return np.real(expectation_value(rho_tb, ham_tb))
# %%
......@@ -31,7 +35,7 @@ h_int_U0 = {
@np.vectorize
def mf_rescaled(alpha, mf0):
hamiltonian = add_tb(h_0, scale_tb(mf0, alpha))
rho, _ = mf.construct_density_matrix(hamiltonian, filling=filling, nk=nk)
rho, _ = construct_density_matrix(hamiltonian, filling=filling, nk=nk)
hamiltonian = add_tb(h_0, scale_tb(mf0, np.sign(alpha)))
return total_energy(hamiltonian, rho)
......@@ -39,7 +43,7 @@ def mf_rescaled(alpha, mf0):
@pytest.mark.parametrize("seed", range(repeat_number))
def test_mexican_hat(seed):
np.random.seed(seed)
guess = utils.generate_guess(frozenset(h_int_U0), len(h_int_U0[(0,)]))
guess = generate_guess(frozenset(h_int_U0), len(h_int_U0[(0,)]))
_model = Model(h_0, h_int_U0, filling=filling)
mf_sol_groundstate = solver(
_model, mf_guess=guess, nk=nk, optimizer_kwargs={"M": 0}
......
......@@ -2,11 +2,13 @@
import numpy as np
import pytest
from pymf.model import Model
from pymf.solvers import solver
from pymf.tb import utils
from pymf.tb.tb import add_tb
from pymf.tests.test_graphene import compute_gap
from pymf import (
Model,
solver,
generate_guess,
add_tb,
)
repeat_number = 10
......@@ -33,7 +35,7 @@ def gap_relation_hubbard(Us, nk, nk_dense, tol=1e-3):
h_int = {
(0,): U * np.kron(np.ones((2, 2)), np.eye(2)),
}
guess = utils.generate_guess(frozenset(h_int), len(list(h_0.values())[0]))
guess = generate_guess(frozenset(h_int), len(list(h_0.values())[0]))
full_model = Model(h_0, h_int, filling=2)
mf_sol = solver(full_model, guess, nk=nk)
_gap = compute_gap(add_tb(h_0, mf_sol), fermi_energy=0, nk=nk_dense)
......
......@@ -3,7 +3,7 @@ import pytest
import numpy as np
from pymf.params.rparams import rparams_to_tb, tb_to_rparams
from pymf.tb.tb import compare_dicts
from pymf.tb.utils import generate_guess
from pymf import generate_guess
repeat_number = 10
......
......@@ -2,10 +2,9 @@
import numpy as np
import pytest
from pymf.model import Model
from pymf.solvers import solver
from pymf.tb import utils
from pymf.tb.tb import add_tb, compare_dicts
from pymf.tb.tb import compare_dicts
from pymf import Model, solver, generate_guess, add_tb, calculate_fermi_energy
# %%
repeat_number = 10
......@@ -24,13 +23,13 @@ def test_zero_hint(seed):
random_hopping_vecs = utils.generate_tb_keys(cutoff, dim)
zero_key = tuple([0] * dim)
h_0_random = utils.generate_guess(random_hopping_vecs, ndof, scale=1)
h_int_only_phases = utils.generate_guess(random_hopping_vecs, ndof, scale=0)
guess = utils.generate_guess(random_hopping_vecs, ndof, scale=1)
h_0_random = generate_guess(random_hopping_vecs, ndof, scale=1)
h_int_only_phases = generate_guess(random_hopping_vecs, ndof, scale=0)
guess = generate_guess(random_hopping_vecs, ndof, scale=1)
model = Model(h_0_random, h_int_only_phases, filling=filling)
mf_sol = solver(model, guess, nk=40, optimizer_kwargs={"M": 0, "f_tol": 1e-10})
h_fermi = utils.calculate_fermi_energy(mf_sol, filling=filling, nk=20)
h_fermi = calculate_fermi_energy(mf_sol, filling=filling, nk=20)
mf_sol[zero_key] -= h_fermi * np.eye(mf_sol[zero_key].shape[0])
compare_dicts(add_tb(mf_sol, h_0_random), h_0_random, atol=1e-10)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment